scholarly journals Synthesis of Bio-additive for Low Sulphur Diesel: Transesterification of Soybean Oil and Ethylene Glycol using K2CO3 Catalyst

2021 ◽  
Vol 4 (1) ◽  
pp. 44-50
Author(s):  
Rhiby Ainur Basit Hariyanto ◽  
R. Arizal Firmansyah ◽  
R. Y. Perry Burhan ◽  
Yulfi Zetra

The desulphurization process of diesel fuel is carried out to reduce the amount of SO2 emissions that can cause acid rain. However, the desulphurization process in diesel fuel not only removes the sulfur compounds but polyaromatic and polar compounds are also eliminated during this process. The loss of these two compounds can reduce the lubricity properties of diesel fuel. Therefore, it is necessary to add an additive compound that can increase the lubricity properties. In this research, 2-hydroxyethyl ester (HEE) was synthesized as an additive to increase the lubricity of diesel fuel. This compound was synthesized through the transesterification reaction of soybean oil and ethylene glycol with K2CO3 as the base catalyst. The composition of the synthesized additives was analyzed using the Gas Chromatography-Mass Spectrometry (GC-MS). Based on the results of GC-MS spectrum analysis, it is known that the 2-hydroxyethyl ester compound has been formed with a yield of 66.5% (relative to the area of the chromatogram peak). The HEE compound obtained is a mixture of 2 hydroxyethyl palmitate, 2 hydroxyethyl linoleate, 2 hydroxyethyl stearate, 2 hydroxyethyl arachidonate, 2 hydroxyethyl nervate, and 2 hydroxyethyl behenate.

Author(s):  
Anna F Robson ◽  
Alexander J Lawson ◽  
Laura Lewis ◽  
Alan Jones ◽  
Stephen George

Background Ethylene glycol is a highly toxic compound found in various household products. Cases of poisoning are rare but may be fatal unless diagnosed and treated promptly. Early recognition of poisoning is critical for the management and recovery of patients. Indirect testing is not specific for the presence of ethylene glycol. Therefore, urgent and accurate measurement should be sought if ingestion is suspected in order to determine the need for treatment with an antidote. Here, we present the validation of an automated assay for measurement of ethylene glycol on an Abbott Architect using a commercially available kit (Catachem). Methods Analytical parameters of imprecision, linearity, stability and bias were determined using spiked human plasma samples processed on both the Catachem assay and on an in-house gas chromatography-mass spectrometry method. Interference was assessed using samples collected into a variety of sample collection tubes and spiked with a number of alcohols. Results Excellent agreement was observed between the two methodologies with the enzymatic assay demonstrating linearity and precision across the relevant clinical range (50–3000 mg/L). In addition, the Catachem assay displayed no interference from a number of different sample tubes and alcohols. However, propylene glycol interference was observed at concentrations associated with excessive use (>1 g/L) and 2,3-butanediol interference observed at concentrations associated with butanone ingestion. Inspection of the enzymatic reaction profile was found to differentiate between alcohols. Conclusions This automated assay is suitable for the diagnosis of ethylene glycol poisoning and is now in routine use, enabling the laboratory to provide a rapid 24 h service with support by gas chromatography-mass spectrometry as necessary.


Sign in / Sign up

Export Citation Format

Share Document