POLYMODEL CONSTRUCTION PRINCIPLE HIGH PERFORMANCE DATA PROCESSING SYSTEM REMOTE EARTH SENSING

Globus ◽  
2020 ◽  
Author(s):  
A. Shul'zhenko
2018 ◽  
Vol 7 (10) ◽  
pp. 399 ◽  
Author(s):  
Junghee Jo ◽  
Kang-Woo Lee

With the rapid development of Internet of Things (IoT) technologies, the increasing volume and diversity of sources of geospatial big data have created challenges in storing, managing, and processing data. In addition to the general characteristics of big data, the unique properties of spatial data make the handling of geospatial big data even more complicated. To facilitate users implementing geospatial big data applications in a MapReduce framework, several big data processing systems have extended the original Hadoop to support spatial properties. Most of those platforms, however, have included spatial functionalities by embedding them as a form of plug-in. Although offering a convenient way to add new features to an existing system, the plug-in has several limitations. In particular, while executing spatial and nonspatial operations by alternating between the existing system and the plug-in, additional read and write overheads have to be added to the workflow, significantly reducing performance efficiency. To address this issue, we have developed Marmot, a high-performance, geospatial big data processing system based on MapReduce. Marmot extends Hadoop at a low level to support seamless integration between spatial and nonspatial operations of a solid framework, allowing improved performance of geoprocessing workflow. This paper explains the overall architecture and data model of Marmot as well as the main algorithm for automatic construction of MapReduce jobs from a given spatial analysis task. To illustrate how Marmot transforms a sequence of operators for spatial analysis to map and reduce functions in a way to achieve better performance, this paper presents an example of spatial analysis retrieving the number of subway stations per city in Korea. This paper also experimentally demonstrates that Marmot generally outperforms SpatialHadoop, one of the top plug-in based spatial big data frameworks, particularly in dealing with complex and time-intensive queries involving spatial index.


1974 ◽  
Vol 13 (03) ◽  
pp. 125-140 ◽  
Author(s):  
Ch. Mellner ◽  
H. Selajstder ◽  
J. Wolodakski

The paper gives a report on the Karolinska Hospital Information System in three parts.In part I, the information problems in health care delivery are discussed and the approach to systems design at the Karolinska Hospital is reported, contrasted, with the traditional approach.In part II, the data base and the data processing system, named T1—J 5, are described.In part III, the applications of the data base and the data processing system are illustrated by a broad description of the contents and rise of the patient data base at the Karolinska Hospital.


2010 ◽  
Vol 24 (6) ◽  
pp. 569-573
Author(s):  
Changhai Zhao ◽  
Qiuhua Wan ◽  
Shujie Wang ◽  
Xinran Lu

2018 ◽  
Vol 4 (1) ◽  
pp. 87-96
Author(s):  
Yanni Suherman

Research conducted at the Office of Archives and Library of Padang Pariaman Regency aims to find out the data processing system library and data archiving. All data processing is done is still very manual by using the document in writing and there is also a stacking of archives on the service. By utilizing library information systems and archives that will be applied to the Office of Archives and Library of Padang Pariaman Regency can improve the quality of service that has not been optimal. This research was made by using System Development Life Cycle (SDLC) which is better known as waterfall method. The first step taken on this method is to go directly to the field by conducting interviews and discussions. This information system will be able to assist the work of officers in terms of data processing libraries and facilitate in search data archives by presenting reports more accurate, effective and efficient.


1958 ◽  
Author(s):  
R. H. Hagopian ◽  
H. L. Herold ◽  
J. Levinthal ◽  
J. Weizenbaum

Sign in / Sign up

Export Citation Format

Share Document