scholarly journals PHYLOGENETIC ASSESSMENT OF TREE SPECIES OF ACONITUM L. FROM KAZAKHSTAN BY USING ITS AND MATK MARKERS

2020 ◽  
Vol 2 (10(79)) ◽  
pp. 4-9
Author(s):  
Sh. Almerekova ◽  
A. Ivaschenko ◽  
R. Kaparbay ◽  
A. Myrzagalieva ◽  
Ye. Turuspekov

The Aconitum L. is a diverse genus consisting of more than 300 species all over the World, including 11 species grown in Kazakhstan. The phylogeny of the genus was mostly studied by using internal transcribed sequences (ITS) of the nuclear genome and maturase K (matK) of the chloroplast genome. Therefore, in this study it was decided to assess the phylogenetic position of three local species A. leucostomum, A. soongoricum and A. apetalum, by using ITS and matK. The application of Maximum-Likelihood (ML) method suggested that the A. soongoricum belong to subgenus Aconitum, and A. leucostomum and A. apetalum to the subgenus Lycoctonum, which was congruent to previous taxanomic studies for this genus. The Median-Joining network using ITS suggested that A. sachalinense belongs to the group of processors of the genus among species that were involved in the analysis. The study is the first attempt to understand phylogenetic relationship of three species of Aconitum grown in Kazakhstan. 

Author(s):  
Thomas Stach ◽  
Samuel Dupont ◽  
Olle Israelson ◽  
Geraldine Fauville ◽  
Hiroaki Nakano ◽  
...  

The phylogenetic position of Xenoturbella spp. has been uncertain since their discovery in 1949. It has been recently suggested that they could be related to Ambulacraria within Deuterostomia. Ambulacraria is a taxon that has been suggested to consist of Hemichordata and Echinodermata. The hypothesis that X. bocki was related to Ambulacraria as well as the hypothesis of a monophyletic Ambulacraria is primarily based on the analysis of DNA sequence data. We tested both phylogenetic hypotheses using antibodies raised against SALMFamide 1 and 2 (S1, S2), neuropeptides isolated from echinoderms, on X. bocki and the enteropneust Harrimania kupfferi. Both species showed distinct positive immunoreactivity against S1 and S2. This finding supports the Ambulacraria-hypothesis and suggests a close phylogenetic relationship of X. bocki to Ambulacraria. In particular, the presence of immunoreactivity against S2 can be interpreted as a synapomorphy of Enteropneusta, Echinodermata, and Xenoturbella spp.


2018 ◽  
Vol 3 (2) ◽  
pp. 1149-1151
Author(s):  
Yaling Wang ◽  
Xiaoyue Yang ◽  
Zefu Wang ◽  
Hong Chen ◽  
Guohua Zhang ◽  
...  

2018 ◽  
Vol 156 (3) ◽  
pp. 158-164 ◽  
Author(s):  
Michelly S. dos Santos ◽  
Ivanete O. Furo ◽  
Marcella M. Tagliarini ◽  
Rafael Kretschmer ◽  
Patricia C.M. O''Brien ◽  
...  

The hoatzin (Opisthocomus hoazin Müller, 1776) is a folivorous bird, endemic to the Amazonian region. It presents some unique characteristics, including wing claws and foregut fermentation, which make its phylogenetic relationship to other birds difficult to determine. There have been various attempts to place it among the Galliformes, Gruiformes, Musophagiformes, Cuculiformes, and Charadriiformes, but phylogenetic analyses always show low supporting values. Nowadays, the hoatzin is included in the monotypic order Opisthocomiformes, but the relationship of this order to other groups of birds is still unclear. Although its karyotype resembles the typical avian model, fissions of the syntenic groups corresponding to chicken chromosomes 1 and 2 and 2 fusions were found. The presence of 18S rDNA clusters in 2 pairs of microchromosomes is another derived character. Hence, different rearrangements were detected in the karyotype of the hoatzin, indicating it has been derived from the putative ancestral karyotype by the occurrence of fissions and fusions. However, as these rearrangements are not exclusive to O. hoazin, they do not clarify the phylogenetic position of this enigmatic species.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Xin Yang ◽  
Deng-Feng Xie ◽  
Jun-Pei Chen ◽  
Song-Dong Zhou ◽  
Yan Yu ◽  
...  

Recent advances in molecular phylogenetics provide us with information of Allium L. taxonomy and evolution, such as the subgenus Cyathophora, which is monophyletic and contains five species. However, previous studies detected distinct incongruence between the nrDNA and cpDNA phylogenies, and the interspecies relationships of this subgenus need to be furtherly resolved. In our study, we newly assembled the whole chloroplast genome of four species in subgenus Cyathophora and two allied Allium species. The complete cp genomes were found to possess a quadripartite structure, and the genome size ranged from 152,913 to 154,174 bp. Among these cp genomes, there were subtle differences in the gene order, gene content, and GC content. Seven hotspot regions (infA, rps16, rps15, ndhF, trnG-UCC, trnC-GCA, and trnK-UUU) with nucleotide diversity greater than 0.02 were discovered. The selection analysis showed that some genes have elevated Ka/Ks ratios. Phylogenetic analysis depended on the complete chloroplast genome (CCG), and the intergenic spacer regions (IGS) and coding DNA sequences (CDS) showed same topologies with high support, which revealed that subgenus Cyathophora was a monophyletic group, containing four species, and A. cyathophorum var. farreri was sister to A. spicatum with 100% bootstrap value. Our study revealed selective pressure may exert effect on several genes of the six Allium species, which may be useful for them to adapt to their specific living environment. We have well resolved the phylogenetic relationship of species in the subgenus Cyathophora, which will contribute to future evolutionary studies or phylogeographic analysis of Allium.


Genome ◽  
2005 ◽  
Vol 48 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Jason T Patterson ◽  
Steven R Larson ◽  
Paul G Johnson

The genus Poa comprises approximately 500 species that occur throughout the world, including the widely grown Kentucky bluegrass (P. pratensis L.). Hybridization and polyploidization have played a prominent role in the evolution of this complex genus, but limited information is available regarding genome relationships in Poa. Thus, we amplified, cloned, and compared the DNA sequences of 2 nuclear genes (CDO504 and thioredoxin-like protein) and 2 chloroplast genome loci (ndhF and trnT–trnF) from 22 Poa species. Four distinct classes of sequences corresponding to 4 putative homoeologous loci from each nuclear gene were found within polyploid P. pratensis. Nuclear sequences from 15 other Poa species were found to group with at least 1 P. pratensis homoeolog, whereas 6 species displayed sequences not present in P. pratensis. The nuclear genome phylogenies presented here show the first evidence of diverse and related genomes in the genus Poa.Key words: phylogeny, polyploidy, chloroplast genome, nuclear genome, Kentucky bluegrass.


Sign in / Sign up

Export Citation Format

Share Document