maximum likelihood approach
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 46)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 05011
Author(s):  
Thomas Spriggs ◽  
Gert Aarts ◽  
Chris Allton ◽  
Timothy Burns ◽  
Rachel Horohan D’Arcy ◽  
...  

We present results from the fastsum collaboration’s programme to determine the spectrum of the bottomonium system as a function of temperature. Three different methods of extracting spectral information are discussed: a Maximum Likelihood approach using a Gaussian spectral function for the ground state, the Backus Gilbert method, and the Kernel Ridge Regression machine learning procedure. We employ the fastsum anisotropic lattices with 2+1 dynamical quark flavours, with temperatures ranging from 47 to 375 MeV.


2021 ◽  
Vol 2022 (1) ◽  
pp. 75-104
Author(s):  
Hussein Darir ◽  
Hussein Sibai ◽  
Chin-Yu Cheng ◽  
Nikita Borisov ◽  
Geir Dullerud ◽  
...  

Abstract Tor has millions of daily users seeking privacy while browsing the Internet. It has thousands of relays to route users’ packets while anonymizing their sources and destinations. Users choose relays to forward their traffic according to probability distributions published by the Tor authorities. The authorities generate these probability distributions based on estimates of the capacities of the relays. They compute these estimates based on the bandwidths of probes sent to the relays. These estimates are necessary for better load balancing. Unfortunately, current methods fall short of providing accurate estimates leaving the network underutilized and its capacities unfairly distributed between the users’ paths. We present MLEFlow, a maximum likelihood approach for estimating relay capacities for optimal load balancing in Tor. We show that MLEFlow generalizes a version of Tor capacity estimation, TorFlow-P, by making better use of measurement history. We prove that the mean of our estimate converges to a small interval around the actual capacities, while the variance converges to zero. We present two versions of MLEFlow: MLEFlow-CF, a closed-form approximation of the MLE and MLEFlow-Q, a discretization and iterative approximation of the MLE which can account for noisy observations. We demonstrate the practical benefits of MLEFlow by simulating it using a flow-based Python simulator of a full Tor network and packet-based Shadow simulation of a scaled down version. In our simulations MLEFlow provides significantly more accurate estimates, which result in improved user performance, with median download speeds increasing by 30%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueting Ma ◽  
Baohong Liu ◽  
Zhenxing Gong ◽  
Xinmao Yu ◽  
Jianping Cai

NOD-like receptors (NLRs) are intracellular sensors of the innate immune system that recognize intracellular pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Little information exists regarding the incidence of positive selection in the evolution of NLRs of birds or the structural differences between bird and mammal NLRs. Evidence of positive selection was identified in four avian NLRs (NOD1, NLRC3, NLRC5, and NLRP3) using the maximum likelihood approach. These NLRs are under different selection pressures which is indicative of different evolution patterns. Analysis of these NLRs showed a lower percentage of codons under positive selection in the LRR domain than seen in the studies of Toll-like receptors (TLRs), suggesting that the LRR domain evolves differently between NLRs and TLRs. Modeling of human, chicken, mammalian, and avian ancestral NLRs revealed the existence of variable evolution patterns in protein structure that may be adaptively driven.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Luca Martino ◽  
Fernando Llorente ◽  
Ernesto Cuberlo ◽  
Javier López-Santiago ◽  
Joaquín Míguez

We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the current estimate of the noise power. A complete Bayesian study over the model parameters and the scale parameter can also be performed. Numerical experiments show the benefits of the proposed approach.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008013
Author(s):  
Julian Rossbroich ◽  
Daniel Trotter ◽  
John Beninger ◽  
Katalin Tóth ◽  
Richard Naud

Short-term synaptic dynamics differ markedly across connections and strongly regulate how action potentials communicate information. To model the range of synaptic dynamics observed in experiments, we have developed a flexible mathematical framework based on a linear-nonlinear operation. This model can capture various experimentally observed features of synaptic dynamics and different types of heteroskedasticity. Despite its conceptual simplicity, we show that it is more adaptable than previous models. Combined with a standard maximum likelihood approach, synaptic dynamics can be accurately and efficiently characterized using naturalistic stimulation patterns. These results make explicit that synaptic processing bears algorithmic similarities with information processing in convolutional neural networks.


Sign in / Sign up

Export Citation Format

Share Document