scholarly journals Highly Diastereo- and Enantioselective Synthesis of Quinuclidine Derivatives by an Iridium-Catalyzed Intramolecular Allylic Dearomatization Reaction

CCS Chemistry ◽  
2019 ◽  
pp. 106-116 ◽  
Author(s):  
Lin Huang ◽  
Yue Cai ◽  
Hui-Jun Zhang ◽  
Chao Zheng ◽  
Li-Xin Dai ◽  
...  

Asymmetric construction of quinuclidine derivatives has been realized by an iridium-catalyzed allylic dearomatization reaction. The catalytic system, derived from [Ir(cod)Cl] 2 and the Feringa ligand, tolerates a broad range of substrates. A large array of quinuclidine derivatives can be obtained under mild conditions in good to excellent yields (68%–96%), diastereoselectivity (up to >20/1 dr), and enantioselectivity (up to >99% ee). These products feature versatile functional group diversity and can undergo diverse transformations. A model that accounts for the origin of the stereoselectivity has been proposed based on density functional theory (DFT) calculations.

2020 ◽  
Author(s):  
Lin Zhang ◽  
Ken Yamazaki ◽  
Jamie Leitch ◽  
Ruben Manzano ◽  
Victoria Atkinson ◽  
...  

<p>The construction of enantioenriched azabicyclo[3.3.1]nonan-6-one heterocycles via an enantioselective desymmetrization of allene-linked cyclohexanones, enabled through a dual catalytic system, that provides synchronous activation of the cyclohexanone with a chiral prolinamide and the allene with a copper(I) co-catalyst to deliver the stereodefined bicyclic core, is described. Successful application to oxygen analogues was also achieved, thereby providing a new enantioselective synthetic entry to architecturally complex bicyclic ethereal frameworks. The mechanistic pathway and the origin of enantio- and diastereoselectivities has been uncovered using density functional theory (DFT) calculations.</p>


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 589 ◽  
Author(s):  
Hao Li ◽  
Zhien Zhang ◽  
Yulu Liu ◽  
Wanglai Cen ◽  
Xubiao Luo

Graphitic carbon nitride (g-C3N4) is a promising semiconductor material which has been widely studied in nanoscience. However, the effect of modifying the performance of g-C3N4 is still under debate. In this communication, we show the size and functional group effects on the g-C3N4 using density functional theory (DFT) calculations. It was found that a molecule with six repeated g-C3N4 units (g-C3N4-6) could be the smallest unit that converges to the limit of its HOMO–LUMO gap. Calculations of g-C3N4-6 with varying numbers of substituted C≡N, C=O, and O−H functional groups show that C≡N and C=O could narrow down the HOMO–LUMO gap, while O−H could slightly raise the gap. This study shows that the change of substituents could tune the band gap of g-C3N4, suggesting that rationally modifying the substituent at the edge of g-C3N4-based materials could help to significantly increase the photocatalytic properties of a metal-free g-C3N4.


2019 ◽  
Author(s):  
Yuxuan Ye ◽  
Ilia Kevlishvili ◽  
Sheng Feng ◽  
Peng Liu ◽  
Stephen L. Buchwald

<div><div><div><p>C3-substituted 1H-indazoles are useful and important substructures in many pharmaceuticals. Methods for direct C3- functionalization of indazoles are relatively rare, compared to reactions developed for the more nucleophilic N1 and N2 positions. Herein, we report a highly C3-selective allylation reaction of 1H-N-(benzoyloxy)indazoles using CuH catalysis. A variety of C3-allyl 1H-indazoles with quaternary stereocenters were efficiently prepared with high levels of enantioselectivity. Density functional theory (DFT) calculations suggest that the indazole addition to copper allyl complex proceeds through an enantioselectivity-determining six- membered Zimmerman-Traxler-type transition state. The enantioselectivity is governed both by the ligand-substrate steric interac- tions and the steric repulsions with the pseudoaxial substituent in the six-membered allylation transition state.</p></div></div></div>


Author(s):  
Morad El-Hendawy ◽  
Ibtesam Desoky ◽  
Mahmoud M. Mohamed

The work aims to develop single-component bifunctional organic catalysts capable of effectively coupling reactions between CO2 and propylene epoxide (PO) under mild conditions using density functional theory (DFT) calculations. The...


2019 ◽  
Author(s):  
Yuxuan Ye ◽  
Ilia Kevlishvili ◽  
Sheng Feng ◽  
Peng Liu ◽  
Stephen L. Buchwald

<div><div><div><p>C3-substituted 1H-indazoles are useful and important substructures in many pharmaceuticals. Methods for direct C3- functionalization of indazoles are relatively rare, compared to reactions developed for the more nucleophilic N1 and N2 positions. Herein, we report a highly C3-selective allylation reaction of 1H-N-(benzoyloxy)indazoles using CuH catalysis. A variety of C3-allyl 1H-indazoles with quaternary stereocenters were efficiently prepared with high levels of enantioselectivity. Density functional theory (DFT) calculations suggest that the indazole addition to copper allyl complex proceeds through an enantioselectivity-determining six- membered Zimmerman-Traxler-type transition state. The enantioselectivity is governed both by the ligand-substrate steric interac- tions and the steric repulsions with the pseudoaxial substituent in the six-membered allylation transition state.</p></div></div></div>


2020 ◽  
Author(s):  
Lin Zhang ◽  
Ken Yamazaki ◽  
Jamie Leitch ◽  
Ruben Manzano ◽  
Victoria Atkinson ◽  
...  

<p>The construction of enantioenriched azabicyclo[3.3.1]nonan-6-one heterocycles via an enantioselective desymmetrization of allene-linked cyclohexanones, enabled through a dual catalytic system, that provides synchronous activation of the cyclohexanone with a chiral prolinamide and the allene with a copper(I) co-catalyst to deliver the stereodefined bicyclic core, is described. Successful application to oxygen analogues was also achieved, thereby providing a new enantioselective synthetic entry to architecturally complex bicyclic ethereal frameworks. The mechanistic pathway and the origin of enantio- and diastereoselectivities has been uncovered using density functional theory (DFT) calculations.</p>


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


2018 ◽  
Vol 74 (12) ◽  
pp. 1641-1649
Author(s):  
Wei-Tsung Lee ◽  
Matthias Zeller ◽  
David Upp ◽  
Yuliya Politanska ◽  
Doug Steinman ◽  
...  

Treatment of the ortho-triazacyclophane 1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-triene [(C6H5)3(NH)(NCH3)2, L1] with Fe[N(SiMe3)2]2 yields the dimeric iron(II) complex bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)bis[(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)iron(II)], [Fe(C20H18N3)4] or Fe2(L1)4 (9). Dissolution of 9 in tetrahydrofuran (THF) results in solvation by two THF ligands and the formation of a simpler monoiron complex, namely bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido-κN 7)bis(tetrahydrofuran-κO)iron(II), [Fe(C20H18N3)2(C4H8O)2] or (L1)2Fe(THF)2 (10). The reaction is reversible and 10 reverts in vacuo to diiron complex 9. In the structures of both 9 and 10, the monoanionic triazacyclophane ligand L1− is observed in only the less-symmetric saddle conformation. No bowl-shaped crown conformers are observed in the solid state, thus preventing chelating κ3-coordination to the metal as had been proposed earlier based on density functional theory (DFT) calculations. Instead, the L1− ligands are bound in either a η2-chelating fashion through the amide and one amine donor (for one of the four ligands of 9), or solely through their amide N atoms in an even simpler monodentate η1-coordination mode. Density functional calculations on dimer 9 revealed nearly full cationic charges on each Fe atom and no bonding interaction between the two metal centers, consistent with the relatively long Fe...Fe distance of 2.912 (1) Å observed in the solid state.


Sign in / Sign up

Export Citation Format

Share Document