scholarly journals A controller for brushless direct current electric motors. Part 2. Software

2020 ◽  
Author(s):  
Zenon Syroka

A universal controller for brushless direct current (BLDC) motors was designed in the presented article. The system is controlled from the user console where operating parameters are set by the user. Signals are transmitted by cables to microcontrollers which control and monitor electric motors. Microprocessors communicate via a data bus. The controller contains the user console module and the motor control module. The user console module generates commands, and motors are controlled and monitored by the control module. Motor control modules operate independently, and each brushless motor has a dedicated control module. Brushless motors can be controlled in bipolar or unipolar mode. The control method is selected by the operator. The user console and motor controllers communicate via the I²C bus.  

2020 ◽  
Author(s):  
Zenon Syroka

A universal controller for brushless direct current (BLDC) motors was designed in the presented article. The system is controlled from the user console where operating parameters are set by the user. Signals are transmitted by cables to microcontrollers which drive and monitor electric motors. Microprocessors communicate via a data bus. The controller contains the user console module and the motor control module. The user console module generates commands, and motors are controlled and monitored by the control module. Motor control modules operate independently, and each brushless motor has a dedicated control module. Brushless motors can be controlled in bipolar or unipolar mode. The control method is selected by the operator. The user console and motor controllers communicate via the I²C bus.


Author(s):  
Dmitriy Kozlovskiy ◽  
Vladimir Mazur ◽  
Aleksey Pudalov

The development trend of the brushless motor industry and their application are described. The advantage of brushless motors in comparison with commutator ones is explained. Brushless motor control methods are described


2014 ◽  
Vol 496-500 ◽  
pp. 1510-1515
Author(s):  
Hao Ming Zhang ◽  
Lian Soon Peh ◽  
Ying Hai Wang

Mixture of DC brushed motors and DC three-phase brushless motors has been employed in complicated robotic systems, in order to control different types of motors may using commercial chipsets. Although these commercial chipsets are capable of driving different types of motors, the users are required to define the type of motors they are controlling through software. Defining the type of motors wrongly may damage the motors. Moreover, if a motor is replaced by another type, users would need to modify the software. The paper provides an auto-detection module that can be employed in a servo motor control system with a hybrid commutation control, wherein the hybrid commutation control can drive either a DC brushed motor or a DC brushless motor.


2020 ◽  
Author(s):  
Michael Holden ◽  
Juan Carlos Miranda ◽  
Jose Coto

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8203
Author(s):  
Piotr Bogusz ◽  
Mariusz Korkosz ◽  
Jan Prokop ◽  
Mateusz Daraż

This paper presents a description and the results of simulations and laboratory tests of proposed methods for dependent torque control in a Switched Reluctance Motor (SRM). The proposed methods are based on Dependent Torque Motor Control (Rising Slope), DTMC(RC), and Dependent Torque Motor Control (Falling Slope), DTMC(FC). The results of these studies were compared with those on the Classical Torque Motor Control (CTMC) method. Studies were conducted for each of the analyzed control methods by determining the efficiency of the drive and the RMS of the source current and analyzing the vibrations generated for each of the control methods. The harmonics of the phase currents, which caused an increase in the level of vibrations generated, were determined. The usefulness of the proposed methods for controlling SRMs was assessed based on simulations and experiments. Additionally, the natural frequencies of the stator of the tested SRM were determined by a simulation using the Ansys Maxwell suite. The levels of vibration acceleration generated by the SRM were compared for the considered control methods.


2012 ◽  
Vol 200 ◽  
pp. 459-461
Author(s):  
Jian Zhu ◽  
Chang Fan Zhang ◽  
Mao Zhen Cui ◽  
Gang Huang

With the shaftless driving technology used in the packaging industry,servo motor control has become increasingly demanding. Beginning with the reasons of chattering, this article proposes a new sliding mode reaching law,adding a power attenuation term in front of the variable speed item,and then affects the shaftless gravure package printing chromatography system with PMSM as the actuator, improved servo motor speed range and efficency of the shaftless driving system.At last,the simulation results indicate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document