The influence of some design parameters on the heat transfer in thermal fuel flowmeter

2021 ◽  
Vol 13 (1) ◽  
pp. 54-59
Author(s):  
Andriy Ilchenko ◽  

The article analyzes the influence, relationship and value of design parameters of the heat flow meter on its radial and axial heat fluxes in the tube (tube diameter, heater diameter and their ratio, thermal conductivity of the tube material, etc.). It is shown that at the stage of choosing the design parameters of the flowmeter it is necessary to take into account the influence of its radial heat flux on the axial one. The influence of radial heat flux in the flowmeter tube on the error of fuel loss measurement is substantiated. Analytical dependences which allow to define an axial heat stream are resulted, their analysis concerning influence of flowmeter tube constructive parameters on heat transfer is carried out. Measures are planned and recommendations are developed for the choice of design flowmeter parameters, development or use, provided that the influence of radial heat flow on the axial is reduced, which will reduce the total error of fuel consumption measurement. Regarding the choice of design parameters of heat meters while reducing the error of measuring fuel consumption, it is shown that the maximum possible decrease in the diameter of the heater and increase the diameter of the flow tube reduce the impact of radial heat flow on the axial and thus reduce the total fuel consumption error. Numerical ratios of tube diameter to flowmeter heater diameter for different thermal conductivities of tube materials are given under the condition of minimal influence on fuel consumption measurement error. For tube materials with a thermal conductivity 0.16… 0.25 W / (m ∙ K) (ebonite, fluoroplastic F-5, etc.) the tube diameters ratio and the heater should be within 1.51… 1.62, and for materials with more high thermal conductivity (thermal conductivity greater than 14.9 W / (m ∙ K)), this ratio should be equal to 1.99.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ranjan Sharma ◽  
Shyam Das

We develop a simple model for a self-gravitating spherically symmetric relativistic star which begins to collapse from an initially static configuration by dissipating energy in the form of radial heat flow. We utilize the model to show how local anisotropy affects the collapse rate and thermal behavior of gravitationally evolving systems.


2021 ◽  
Vol 172 ◽  
pp. 112854
Author(s):  
Maulik Panchal ◽  
Vrushabh Lambade ◽  
Vimal Kanpariya ◽  
Harsh Patel ◽  
Paritosh Chaudhuri

1965 ◽  
Vol 48 (6) ◽  
pp. 297-305 ◽  
Author(s):  
T. G. GODFREY ◽  
W. FULKERSON ◽  
T. G. KOLLIE ◽  
J. P. MOORE ◽  
D. L. McELROY

A radial heat-flow apparatus has been constructed in Pyrex glass and used for liquid thermal conductivity investigations. The liquid under test fills the 1.25mm space between concentric cylinders and a measured quantity of heat flows inwards. After calibration using liquids of known thermal conductivity, new values are obtained for pyridine and three chlorofluoro­carbon oils. The apparatus can also be used for direct determinations when allowance is made for the temperature drop occurring in each of the glass walls. For this purpose, a determination of the thermal conductivity of the glass was made using a similar method. A discussion of the results is included.


Author(s):  
José A. Martinho Simões ◽  
Manuel Minas da Piedade

Heat flow calorimeters, also known as “heat flux,” “heat conduction,” or “heat leakage” calorimeters, are instruments where the heat output or input associated with a given phenomenon is transferred between a reaction vessel and a heat sink. This heat transfer can be monitored with high thermal conductivity thermopiles containing large numbers of identical thermocouple junctions regularly arranged around the reaction vessel (the cell) and connecting its outside wall to the heat sink (the thermostat). The determination of the heat flow relies on the so-called Seebeck effect. An electric potential, known as thermoelectric force and represented by E, is observed when two wires of different metals are joined at both ends and these junctions are subjected to different temperatures, T1 and T2. Several thermocouples can be associated, forming a thermopile. For small temperature differences, the thermoelectric force generated by the thermopile is proportional to T1 − T2 and to the number of thermocouples of the pile (n): E = nε ′ (T1 − T2) (9.1) where ε′ is the thermoelectric power of a single thermocouple (ε′ = dE/dT).


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Ananth S. Iyengar ◽  
Alexis R. Abramson

A steady state thermal conductivity measuring setup based on the comparative radial heat flow method is presented. The setup consists of a pair of coaxial cylinders as its main components, with test fluid placed in the annular space between these cylinders with water tight cover plates at the top and bottom of the cylinders. Experiment involves heating the coil at the concentric-center of the inner cylinder; steady state data are acquired for the calculation of the thermal conductivity. Thermal conductivity is calculated by comparing the radial heat flow between the cylinders and the test fluid (comparative method). Thermal conductivity of water, glycerol, and ethylene glycol was measured for varying temperatures and is in good agreement with the published thermal conductivity values in literature.


Sign in / Sign up

Export Citation Format

Share Document