scholarly journals EXPERIMENTAL STUDIES OF DEFORMABILITY AND FRACTURE RESISTANCE OF AIRFIELD SLABS ON MODELS

2021 ◽  
Vol 3 (2) ◽  
pp. 64-74
Author(s):  
I. Korneieva ◽  
◽  
D. Kirichenko ◽  
O. Shyliaiev ◽  
◽  
...  

The results of experimental studies of deformability and crack resistance of models of aerodrome slabs made of reinforced concrete and steel-fiber concrete, made on the basis of serial slab PAG-18 taking into account the scale factor, are presented. Two series of slabs were tested - two models of reinforced concrete and two models with one-percent dispersed reinforcement. The load was applied in steps, the instrument readings were recorded twice at each step and the crack opening width was measured starting from the moment of the first crack formation. Dial gauges, deflectometer and microscope MPB-3 were used as measuring instruments. In accordance with the normative documents acting in Ukraine, one of two possible loading schemes was considered - with the loading by the concentrated force applied in the span part of a plate which had a hinged support along its short sides. Plate models were tested on a specially made stand. Each load step ended with a five-minute dwell time, at the beginning and the end of which readings were taken on the measuring instruments. The deformations at the same levels were measured with dial gauges. The process of crack formation was observed with a Brinell tube in the places of the greatest crack opening. Breaking load for fiber concrete slab was 1.52 times higher than for reinforced concrete slab, and the moment of cracking initiation was 1.22 times higher. The process of cracking in the fiber concrete slab begins at higher loads than in the reinforced concrete slab. The initial crack opening width of the slabs is almost the same, and the final crack opening width of all the cracks in the fiber concrete slab is significantly lower than in the reinforced concrete slab. The deformations in steel-fiber concrete slabs when the load is applied in the span, both for compressed and stretched fibers, are higher than in reinforced concrete slabs. The experimental studies indicate that dispersed reinforcement of airfield slabs with steel fiber leads to their higher crack resistance.

Author(s):  
M.G. Surianinov ◽  
◽  
S.P. Neutov ◽  
I.B. Korneeva ◽  
◽  
...  

Abstract. The results of experimental studies of deformability and crack resistance of models of airfield slabs made of reinforced concrete and steel fiber concrete are presented. Two series of plates were tested ‒ three models of reinforced concrete and three models with steel fiber added to the concrete mixture in amount of 1% of the total volume of the product. The load was applied in small steps, the instrument readings were recorded twice at each step, and the crack opening width was measured starting from the moment of the first crack formation. Dial gauges and deflectometers were used as measuring instruments. According to the normative documents acting in Ukraine, one of two possible loading schemes was considered ‒ with the loading by the concentrated force applied on the cantilever part of a plate. The plate models were tested on a specially made stand which consisted of four supporting struts connected in pairs by beams. The airfield slab was supported by the beams. The load was applied along the width of the plate in steps ‒ 0.05 of the destructive load, along two concentrated vertical strips. Each degree of load ended with a five-minute dwell time, at the beginning and end of which readings were taken on the measuring instruments. The deformations at the same levels were measured with dial gauges. The process of crack formation was observed with a Brinell tube in the places of the greatest crack opening. It follows from the obtained results that the process of cracking in the fiber concrete slab begins at higher loads than in the reinforced concrete slab. The final and initial crack opening widths of all cracks in the fiber concrete slab are significantly lower than in the reinforced concrete slab. The deformations in steel-fiber concrete slabs during the application of load in the cantilever part, both for compressed and stretched fibers are higher than in reinforced concrete slabs. At the initial stages of load application in the cantilevered part of the slabs, the deflections increase in a linear relationship. The curves get non-linear character for airfield slabs made of reinforced concrete when the load reaches the level of 10÷25 kN, for steel-fiber-concrete slabs ‒ 15÷30 kN. In reinforced concrete slabs, the non-linearity starts a little earlier and is expressed more clearly. Experimental studies show that dispersed reinforcement of airfield slabs with steel fiber leads to their higher crack resistance.


2020 ◽  
Vol 864 ◽  
pp. 9-18
Author(s):  
Mykola Surianinov ◽  
Stepan Neutov ◽  
Iryna Korneieva ◽  
Maryna Sydorchuk

Two models of hollow core slabs were tested: reinforced concrete and steel fiber concrete. When designing slab models, the proportions of full-sized structures were preserved for the further possibility of correct data comparison. As a result of testing models of hollow core slabs, it was found that the bearing capacity of a slab with combined reinforcement is 24% higher than that of reinforced concrete, the deflection is 36% less, and the crack resistance is 18% higher. The use of steel fiber made it possible to avoid the brittle fracture of a steel fiber reinforced concrete slab, which was observed in the model of a conventional reinforced concrete slab.


2020 ◽  
Vol 166 ◽  
pp. 06003
Author(s):  
Mykola Surianinov ◽  
Stepan Neutov ◽  
Iryna Korneieva

The results of experimental studies of the steel fiber influence on the bearing capacity, deformability and crack resistance of reinforced concrete multi-hollow plates are given. We investigated a serial floor slab and a similar one, but with the addition of steel fiber. Both plates are factory-made. For testing, the testing apparatus was designed and manufactured that made it possible to study full-size floor slabs in laboratory conditions. The tests were carried out according to a single-span scheme with the replacing equivalent load. The loading was carried out by applying two concentrated strip vertical loads along the plate width. The load was applied in steps of (0.04 ÷ 0.05) from the breaking load. Each stage ended with exposure lasting up to 10 minutes with fixing all the necessary parameters. Deformations were measured using dial gauges. From the moment the first crack appeared in the stretched zone of concrete, the process of crack formation and opening was monitored. At each level, using the Brunell tube, the width of their opening and height were measured. The moment of cracking in both slabs began at the same relative strain. It has been established that the bearing capacity and crack resistance of a slab of combined reinforcement using steel fiber are respectively 50 and 44% higher than that of a similar reinforced concrete slab. The maximum deflection of the slab of combined reinforcement is 37.5% lower than that of conventional reinforced concrete. The destruction of both slabs occurred under loads, when the relative deformations in the compressed zone of concrete reached 0.80×10-3 and 1.10×10-3 for reinforced concrete and steel-fiber concrete slabs, respectively, the difference is 37.5%.


2019 ◽  
Vol 968 ◽  
pp. 227-233 ◽  
Author(s):  
Stepan Neutov ◽  
Maryna Sydorchuk ◽  
Mykola Surianinov

Experimental studies of the stress-strain state of reinforced concrete and fiber-reinforced concrete beams under short-term and long-term loads were carried out. The tests were carried out on three series of beams of different types - from ordinary concrete, steel fiber concrete and combined section, when the lower zone of the beam with a height of0.5his made of steel fiber concrete, and the upper one is made of ordinary concrete. During short-term loading, the load was applied in steps with a 10-minute exposure at each step to failure or to a predetermined level of a continuously acting load. In the interval between the steps, the process of cracking was tracked. After reaching a given level of loading, the load was fixed and maintained unchanged with a spring cassette for 300 days. Deformations were measured using strain gauges and dial gauges. Deflections and relative deformations of the extreme upper and extreme lower fibers for three types of beams are determined. It has been established that stabilization of deflections in beams from steel fiber concrete occurs much earlier (100 days) than in beams made of ordinary concrete (175 days). Studies have shown that the beams of ordinary concrete in the process of long-acting load lowered the carrying capacity by 5.5%. The bearing capacity of steel concrete beams, in contrast, increased by 7.6%.


World Science ◽  
2018 ◽  
pp. 28-32
Author(s):  
Сурьянинов Н. Г. ◽  
Корнеева И. Б.

In the work, the design of the floor slab with five voids of steel fiber concrete, similar to a serial reinforced concrete slab, is proposed. Both plates are calculated in accordance with the regulations on the first and second limiting states. For experimental studies, a series of plates was made, each of which was tested before destruction. Scaling was used for all the plates, taking into account the design standards and technological capabilities of the laboratory.The loading of structures during testing was carried out in steps. Each step was 10% of the control load when checking the bearing capacity and crack resistance and 20% of the control load when checking the rigidity of structures. As a result of tests, the values of stresses and deflections were obtained as in theoretical calculations, the stresses in the concrete and steel fiber concrete slabs differ only slightly, and the deflections, especially up to 60% of the breaking load, differ several times, which confirms the much slower crack opening in the steel fiber concrete slabs. This suggests that at loads corresponding to the operational level, cracks will not open. The use of steel fiber concrete with preservation of linear reinforcement for the manufacture of hollow-core slabs allows to improve their characteristics, first of all - bearing capacity and crack resistance.


Author(s):  
V. A. Dorf ◽  
◽  
R. O. Krasnovskij ◽  
D. E. Kapustin ◽  
P. S. Sultygova ◽  
...  

The paper considers the effects of high temperatures in case of fire on the change in impermeability of steel fiber reinforced concrete having a high-strength cement-sand matrix and various content of fiber of different types, sizes, and strength. It is shown that in the temperature range from 20° to 1100° C in the diagram “Heating temperature - impermeability class», the matrix and steel fiber concrete(SFC) have a S-shaped character, and in case of heating temperature of over 100 °C, there comes a distinct decrease in impermeability.


2014 ◽  
Vol 13 (2) ◽  
pp. 265-274
Author(s):  
Marek Łagoda ◽  
Krzysztof Śledziewski

The theme of the paper is the effect of scratching of reinforced concrete slab on the work of a steel-concrete composite beam. The paper evaluates the state of knowledge in the field of composite structures, in particular, statically indeterminate structures with concrete in tension zones. Additionally, in a nutshell, it describes the current practice of design. Moreover, experimental studies were described on continuous beams that were made by the authors. A proposal for further work on this topic was also presented.


Sign in / Sign up

Export Citation Format

Share Document