scholarly journals DEFORMABILITY AND CRACK RESISTANCE OF AIRFIELD SLABS

Author(s):  
M.G. Surianinov ◽  
◽  
S.P. Neutov ◽  
I.B. Korneeva ◽  
◽  
...  

Abstract. The results of experimental studies of deformability and crack resistance of models of airfield slabs made of reinforced concrete and steel fiber concrete are presented. Two series of plates were tested ‒ three models of reinforced concrete and three models with steel fiber added to the concrete mixture in amount of 1% of the total volume of the product. The load was applied in small steps, the instrument readings were recorded twice at each step, and the crack opening width was measured starting from the moment of the first crack formation. Dial gauges and deflectometers were used as measuring instruments. According to the normative documents acting in Ukraine, one of two possible loading schemes was considered ‒ with the loading by the concentrated force applied on the cantilever part of a plate. The plate models were tested on a specially made stand which consisted of four supporting struts connected in pairs by beams. The airfield slab was supported by the beams. The load was applied along the width of the plate in steps ‒ 0.05 of the destructive load, along two concentrated vertical strips. Each degree of load ended with a five-minute dwell time, at the beginning and end of which readings were taken on the measuring instruments. The deformations at the same levels were measured with dial gauges. The process of crack formation was observed with a Brinell tube in the places of the greatest crack opening. It follows from the obtained results that the process of cracking in the fiber concrete slab begins at higher loads than in the reinforced concrete slab. The final and initial crack opening widths of all cracks in the fiber concrete slab are significantly lower than in the reinforced concrete slab. The deformations in steel-fiber concrete slabs during the application of load in the cantilever part, both for compressed and stretched fibers are higher than in reinforced concrete slabs. At the initial stages of load application in the cantilevered part of the slabs, the deflections increase in a linear relationship. The curves get non-linear character for airfield slabs made of reinforced concrete when the load reaches the level of 10÷25 kN, for steel-fiber-concrete slabs ‒ 15÷30 kN. In reinforced concrete slabs, the non-linearity starts a little earlier and is expressed more clearly. Experimental studies show that dispersed reinforcement of airfield slabs with steel fiber leads to their higher crack resistance.

2020 ◽  
Vol 166 ◽  
pp. 06003
Author(s):  
Mykola Surianinov ◽  
Stepan Neutov ◽  
Iryna Korneieva

The results of experimental studies of the steel fiber influence on the bearing capacity, deformability and crack resistance of reinforced concrete multi-hollow plates are given. We investigated a serial floor slab and a similar one, but with the addition of steel fiber. Both plates are factory-made. For testing, the testing apparatus was designed and manufactured that made it possible to study full-size floor slabs in laboratory conditions. The tests were carried out according to a single-span scheme with the replacing equivalent load. The loading was carried out by applying two concentrated strip vertical loads along the plate width. The load was applied in steps of (0.04 ÷ 0.05) from the breaking load. Each stage ended with exposure lasting up to 10 minutes with fixing all the necessary parameters. Deformations were measured using dial gauges. From the moment the first crack appeared in the stretched zone of concrete, the process of crack formation and opening was monitored. At each level, using the Brunell tube, the width of their opening and height were measured. The moment of cracking in both slabs began at the same relative strain. It has been established that the bearing capacity and crack resistance of a slab of combined reinforcement using steel fiber are respectively 50 and 44% higher than that of a similar reinforced concrete slab. The maximum deflection of the slab of combined reinforcement is 37.5% lower than that of conventional reinforced concrete. The destruction of both slabs occurred under loads, when the relative deformations in the compressed zone of concrete reached 0.80×10-3 and 1.10×10-3 for reinforced concrete and steel-fiber concrete slabs, respectively, the difference is 37.5%.


2021 ◽  
Vol 3 (2) ◽  
pp. 64-74
Author(s):  
I. Korneieva ◽  
◽  
D. Kirichenko ◽  
O. Shyliaiev ◽  
◽  
...  

The results of experimental studies of deformability and crack resistance of models of aerodrome slabs made of reinforced concrete and steel-fiber concrete, made on the basis of serial slab PAG-18 taking into account the scale factor, are presented. Two series of slabs were tested - two models of reinforced concrete and two models with one-percent dispersed reinforcement. The load was applied in steps, the instrument readings were recorded twice at each step and the crack opening width was measured starting from the moment of the first crack formation. Dial gauges, deflectometer and microscope MPB-3 were used as measuring instruments. In accordance with the normative documents acting in Ukraine, one of two possible loading schemes was considered - with the loading by the concentrated force applied in the span part of a plate which had a hinged support along its short sides. Plate models were tested on a specially made stand. Each load step ended with a five-minute dwell time, at the beginning and the end of which readings were taken on the measuring instruments. The deformations at the same levels were measured with dial gauges. The process of crack formation was observed with a Brinell tube in the places of the greatest crack opening. Breaking load for fiber concrete slab was 1.52 times higher than for reinforced concrete slab, and the moment of cracking initiation was 1.22 times higher. The process of cracking in the fiber concrete slab begins at higher loads than in the reinforced concrete slab. The initial crack opening width of the slabs is almost the same, and the final crack opening width of all the cracks in the fiber concrete slab is significantly lower than in the reinforced concrete slab. The deformations in steel-fiber concrete slabs when the load is applied in the span, both for compressed and stretched fibers, are higher than in reinforced concrete slabs. The experimental studies indicate that dispersed reinforcement of airfield slabs with steel fiber leads to their higher crack resistance.


World Science ◽  
2018 ◽  
pp. 28-32
Author(s):  
Сурьянинов Н. Г. ◽  
Корнеева И. Б.

In the work, the design of the floor slab with five voids of steel fiber concrete, similar to a serial reinforced concrete slab, is proposed. Both plates are calculated in accordance with the regulations on the first and second limiting states. For experimental studies, a series of plates was made, each of which was tested before destruction. Scaling was used for all the plates, taking into account the design standards and technological capabilities of the laboratory.The loading of structures during testing was carried out in steps. Each step was 10% of the control load when checking the bearing capacity and crack resistance and 20% of the control load when checking the rigidity of structures. As a result of tests, the values of stresses and deflections were obtained as in theoretical calculations, the stresses in the concrete and steel fiber concrete slabs differ only slightly, and the deflections, especially up to 60% of the breaking load, differ several times, which confirms the much slower crack opening in the steel fiber concrete slabs. This suggests that at loads corresponding to the operational level, cracks will not open. The use of steel fiber concrete with preservation of linear reinforcement for the manufacture of hollow-core slabs allows to improve their characteristics, first of all - bearing capacity and crack resistance.


2018 ◽  
Vol 33 ◽  
pp. 02007 ◽  
Author(s):  
Valery Filatov

The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.


2019 ◽  
Vol 968 ◽  
pp. 227-233 ◽  
Author(s):  
Stepan Neutov ◽  
Maryna Sydorchuk ◽  
Mykola Surianinov

Experimental studies of the stress-strain state of reinforced concrete and fiber-reinforced concrete beams under short-term and long-term loads were carried out. The tests were carried out on three series of beams of different types - from ordinary concrete, steel fiber concrete and combined section, when the lower zone of the beam with a height of0.5his made of steel fiber concrete, and the upper one is made of ordinary concrete. During short-term loading, the load was applied in steps with a 10-minute exposure at each step to failure or to a predetermined level of a continuously acting load. In the interval between the steps, the process of cracking was tracked. After reaching a given level of loading, the load was fixed and maintained unchanged with a spring cassette for 300 days. Deformations were measured using strain gauges and dial gauges. Deflections and relative deformations of the extreme upper and extreme lower fibers for three types of beams are determined. It has been established that stabilization of deflections in beams from steel fiber concrete occurs much earlier (100 days) than in beams made of ordinary concrete (175 days). Studies have shown that the beams of ordinary concrete in the process of long-acting load lowered the carrying capacity by 5.5%. The bearing capacity of steel concrete beams, in contrast, increased by 7.6%.


2020 ◽  
Vol 864 ◽  
pp. 9-18
Author(s):  
Mykola Surianinov ◽  
Stepan Neutov ◽  
Iryna Korneieva ◽  
Maryna Sydorchuk

Two models of hollow core slabs were tested: reinforced concrete and steel fiber concrete. When designing slab models, the proportions of full-sized structures were preserved for the further possibility of correct data comparison. As a result of testing models of hollow core slabs, it was found that the bearing capacity of a slab with combined reinforcement is 24% higher than that of reinforced concrete, the deflection is 36% less, and the crack resistance is 18% higher. The use of steel fiber made it possible to avoid the brittle fracture of a steel fiber reinforced concrete slab, which was observed in the model of a conventional reinforced concrete slab.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7113
Author(s):  
Kevin Paolo V. Robles ◽  
Dong-Won Kim ◽  
Jurng-Jae Yee ◽  
Jin-Wook Lee ◽  
Seong-Hoon Kee

The main objectives of this research are to evaluate the effects of delamination defects on the measurement of electrical resistivity of reinforced concrete slabs through analytical and experimental studies in the laboratory, and to propose a practical guide for electrical resistivity measurements on concrete with delamination defects. First, a 3D finite element model was developed to simulate the variation of electric potential field in concrete over delamination defects with various depths and lateral sizes. Second, for experimental studies, two reinforced concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) with artificial delamination defects of various dimensions and depths were fabricated. Third, the electrical resistivity of concrete over delamination defects in the numerical simulation models and the two concrete slab specimens were evaluated by using a 4-point Wenner probe in accordance with AASHTO (American Association of State Highway and Transportation Office) T-358. It was demonstrated from analytical and experimental studies in this study that shallow (50 mm depth) and deep (250 mm depth) delamination defects resulted in higher and lower electrical resistivity (ER) values, respectively, as compared to measurements performed on solid concrete locations. Furthermore, the increase in size of shallow defects resulted in an increase in concrete resistivity, whereas the increase in sizes of deep delamination defects yielded opposite results. In addition, measurements done directly above the steel reinforcements significantly lowered ER values. Lastly, it was observed from experimental studies that the effect of delamination defects on the values of electrical resistivity decreases as the saturation level of concrete increases.


Author(s):  
Oleksandr Zhuravskyi

The aim of the research is to obtain new experimental data of biaxially prestressed steel-fiber-concrete slabs under transverse loading and to develop a method for calculating their bearing capacity. Experimental-theoretical studies of biaxially prestressed steel-fiber-concrete slabs under the action of a uniformly distributed load were performed. Experimental studies were performed on plates measuring 40x800x800 mm with prestressed reinforcement Ø5Bp-II in two directions. Samples of the first series were reinforced with a mixture of steel fibers of STAFIB 50/1.0 and STAFIB 30/0.6 with anchors at the ends, the percentage of which was 0.5% by volume of each fiber. The samples of the second series contained 1.0% by volume of NOVOKON URW 50/1.0 corrugated fibers. A method for calculating steel-fiber-concrete (SFB) slabs based on the deformation method is proposed. This takes into account the real diagram "σ-ε" for uniaxial and biaxial compression of steel-fiber-concrete and increase the compressive strength of steel-fiber-concrete under conditions of biaxial compression. Stress losses in the reinforcement from creep and shrinkage deformations of steel-fiber-concrete are also taken into account. The results of calculation of experimental samples and their comparison with the results of experimental researches are given. They showed sufficient convergence. The difference was 1.1… 2.5%. It is established that the bearing capacity of biaxially prestressed slabs is 1.55… 1.61 times higher than unstressed slabs and 42.4… 55.5% higher than uniaxially stressed slabs.


Author(s):  
Dapeng Yang ◽  
Bei Zhang ◽  
Guojun Liu

AbstractSteel-fiber reinforced concrete slabs have good blast and spall resistance. In this study, compression and splitting tensile experiments were carried out to obtain the basic quasi-static mechanical properties of the steel-fiber concrete specimens and the influence of steel-fiber parameters was revealed. In-field explosion experiments were performed to study the dynamic responses and damage modes of the steel-fiber reinforced concrete slabs. Five typical spall damage modes were observed, the distribution law of the spalling fragments was obtained, and the influence of steel-fiber shape, length, length–diameter ratio and volume percentage on the spall performance were revealed. These results will provide a basis for the application of steel-fiber reinforced concrete slabs in protective structures.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements


Sign in / Sign up

Export Citation Format

Share Document