scholarly journals 2099) Experimental Studies on Joint of Corrugated Reinforced Concrete Slab Structures : Study on Joint of Reinforced Concrete Frame, Part 17(Structure)

1959 ◽  
Vol 63.1 (0) ◽  
pp. 629-632
Author(s):  
Yoshikatsu Tsuboi ◽  
Hideo Yashiro

A combination of outstanding advantages of concrete filled steel tube (CFST) column with reinforced concrete (RC) flat slab creates the effective and potential structure to replace traditional reinforced concrete frame structures in high-rise buildings. The CFST column – RC slab connection is the key factor for this structure type to work properly and effectively. Currently, the studies mainly focus on inner CFST column and RC slab connection, there are very few experimental studies on connection of edge or corner CFST columns and RC flat slab. This paper proposes edge and corner CFST columns to RC flat slab connection structures using H-shaped shear head and then conducts two large size tests to investigate behaviors of the connection.


2018 ◽  
Vol 878 ◽  
pp. 115-120
Author(s):  
Levon Avetisyan

This article presents a study of the strength of a 25-storey reinforced concrete frame against progressive collapse in fire conditions. Taking into account the angles of disclosure of plastic hinges as norming for the strength of reinforced concrete elements, a computer technology program has been developed and included in PR Wolfram Mathematica 10 for the dynamic calculation of compressed reinforced concrete elements under fire exposure on the basis of the conducted experimental studies. Dynamic calculation of the strength of eccentrically compressed reinforced concrete columns was carried out, with operation in normal conditions and under high temperatures. The diagram «moment-curvature» and the graph of the change of the static and dynamic strength of the column depending on the temperature were developed. Nonlinear dynamic analysis of a 25-storey reinforced concrete frame was conducted, taking into account the changes of the dynamic characteristics of reinforced concrete elements in fire and, the estimation of resistance of the frame was given.


2014 ◽  
Vol 13 (2) ◽  
pp. 265-274
Author(s):  
Marek Łagoda ◽  
Krzysztof Śledziewski

The theme of the paper is the effect of scratching of reinforced concrete slab on the work of a steel-concrete composite beam. The paper evaluates the state of knowledge in the field of composite structures, in particular, statically indeterminate structures with concrete in tension zones. Additionally, in a nutshell, it describes the current practice of design. Moreover, experimental studies were described on continuous beams that were made by the authors. A proposal for further work on this topic was also presented.


2011 ◽  
Vol 50-51 ◽  
pp. 1003-1007 ◽  
Author(s):  
Jian Qiang Han ◽  
Zhen Bao Li ◽  
Xiao Sheng Song

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of this new prestressed precast reinforced concrete intelligent structure, by analyzing one prestressed precast reinforced concrete frame under low reversed cyclic load test. Prestressed precast reinforced concrete frame is a new assembly architecture intelligent structure. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. Experimental studies indicate that this new prestressed precast reinforced concrete intelligent structure has a good seismic performance. This prestressed precast reinforced concrete frame is a new kind of structural system complying with the development of architectural industrialization, which is worthy of popularization and application in the earthquake area.


2021 ◽  
Vol 97 (5) ◽  
pp. 62-73
Author(s):  
O.E. OSOVSKIKH ◽  

The article presents the results of experimental research and computational analysis of a reinforced concrete spatial frame - a fragment of the frame of a multi-storey building in limiting and out-of-limit states. A series of tests for design and beyond design impacts was performed at the stage of construction without cracks. The dynamic calculation of the considered structural system was carried out in the mode of direct integration of the equations of motion. The features of frame deformation before and after the beyond design basis impact, causing a sudden structural restructuring of the structural system, have been established. Satisfactory agreement of the calculation results with the test results is obtained.


The analysis of various regulatory methods for calculating reinforced concrete slabs for punching and comparing with experiment results is made. The tested sample, measuring equipment and test bench are described. Dimensions and materials for the production of the prototype were chosen on the basis of experience in the construction of girderless and capless regular monolithic reinforced concrete frames. The results of experimental studies of a fragment of a slab reinforced concrete structure in order to study the stress-strain state, when implementing the mechanism of punching, are presented. The results of observations obtained during the tests are presented. A comparison of the nature of operation of the tested fragment of the slab with the nature of operation of the full-fledged construction is given. A comparative analysis of the stress-strain state of the tested sample and the results of the calculation of the bearing capacity for punching according to various normative methods is performed. According to the results of the experiment, the main criteria determining the implementation of the punching mechanism are established, and a new method for calculating girderless floors is proposed on the basis of a fundamentally different approach in determining the bearing capacity.


2019 ◽  
Vol 968 ◽  
pp. 361-367 ◽  
Author(s):  
Andrii Kovalov ◽  
Yuriy Otrosh ◽  
Mykola Surianinov ◽  
Tatiana Kovalevska

The unsatisfactory technical condition of many buildings and structures is due to their aging and requires a quick technical condition assessment. The most promising way for experimental researches data verification is computer modeling of structures, also during a fire. It is advisable to use the ANSYS software. Experimental fire tests of reinforced concrete slabs were carried out. In order to assess the experiment quality and the reliability of the received temperature distribution data, it was used a reinforced concrete slab computer simulation in the ANSYS R.17.1 software system. There was provided a comparative analysis of experimental studies results and numerical data analysis. The results confirm that method of conducted experimental research and computer simulation with further numerical analysis can be recommended for practical application. The mathematical model makes possible operative prediction for the controlled parameters values of building structures.


2020 ◽  
Vol 8 (1) ◽  
pp. 39-47
Author(s):  
Vitaliy Subbotin

The conditions of creating a model for conducting experimental studies in a tray of a patented reinforcement design of existing strip foundations are considered. It is proposed to simulate and investigate the effectiveness of the new design of reinforcement of the strip foundation, allowing to take into account the rheological processes in the soil of the base when performing measures for structural reinforcement using a profiled sheet in conjunction with monolithic elements. Based on the rules of modeling and similarity theory, it is proposed to determine the optimal conditions for experimental modeling of a solution to strengthen existing monolithic reinforced concrete strip foundations by working together with a monolithic reinforced concrete slab divided by a profiled sheet in height into two parts (upper and lower) with injection wells for injection of a hardening mortar directly under fixed formwork from a profiled sheet


2021 ◽  
Vol 3 (2) ◽  
pp. 64-74
Author(s):  
I. Korneieva ◽  
◽  
D. Kirichenko ◽  
O. Shyliaiev ◽  
◽  
...  

The results of experimental studies of deformability and crack resistance of models of aerodrome slabs made of reinforced concrete and steel-fiber concrete, made on the basis of serial slab PAG-18 taking into account the scale factor, are presented. Two series of slabs were tested - two models of reinforced concrete and two models with one-percent dispersed reinforcement. The load was applied in steps, the instrument readings were recorded twice at each step and the crack opening width was measured starting from the moment of the first crack formation. Dial gauges, deflectometer and microscope MPB-3 were used as measuring instruments. In accordance with the normative documents acting in Ukraine, one of two possible loading schemes was considered - with the loading by the concentrated force applied in the span part of a plate which had a hinged support along its short sides. Plate models were tested on a specially made stand. Each load step ended with a five-minute dwell time, at the beginning and the end of which readings were taken on the measuring instruments. The deformations at the same levels were measured with dial gauges. The process of crack formation was observed with a Brinell tube in the places of the greatest crack opening. Breaking load for fiber concrete slab was 1.52 times higher than for reinforced concrete slab, and the moment of cracking initiation was 1.22 times higher. The process of cracking in the fiber concrete slab begins at higher loads than in the reinforced concrete slab. The initial crack opening width of the slabs is almost the same, and the final crack opening width of all the cracks in the fiber concrete slab is significantly lower than in the reinforced concrete slab. The deformations in steel-fiber concrete slabs when the load is applied in the span, both for compressed and stretched fibers, are higher than in reinforced concrete slabs. The experimental studies indicate that dispersed reinforcement of airfield slabs with steel fiber leads to their higher crack resistance.


Sign in / Sign up

Export Citation Format

Share Document