Influence of chrome electroplating on fatigue strength of parts

2020 ◽  
pp. 112-119
Author(s):  
S. V. Malysh ◽  
I. M. Kovenskiy ◽  
L. Z. Chaugarova

The article is devoted to the results of studies, which have been conducted on parts with electrolytic chromium in order to determine the effect of the coating on fatigue strength of their. The work was performed in observance of standards, which are fixed in GOST RV 2840-001-2008. Samples for the tests were made from standard gas turbine engine compressor blades. We used a VEDS- 1500 electrodynamic vibration stand with an UMK-12K power amplifier to excite vibrations. It has been shown that the minimum endurance limit of 46 kgf/mm2 based on 2 ∙ 107 cycles, established on uncoated parts, didn't decrease during fatigue tests of compressor blades with an electroplated chrome layer. It should be stressed that the influence of the geometry of the chrome-plated part on the reduction of the endurance limit has been established.

Author(s):  
Mickhail S. Nikhamkin ◽  
Leonid V. Voronov ◽  
Irina V. Semenova

Foreign object damage (FOD) is always an all-important problem of gas turbine engines safety, reliability and operating costs. This paper describes experimental and numerical prediction investigations of FOD to compressor blades of gas turbine engine. Experimental modeling of FOD processes was done using a special plant on the base of a pneumatic gun. Real steel blades of a high-pressure compressor were impacted with spherical steel projectiles at the velocity about 200 m/s. Typical in-service damages as well as round dents, tears and bends were reproduced in the experiment. Numerical prediction analyses of the damage process were fulfilled by finite element method (FEM). Material behavior is described with elastic-plastic strain rate dependent model. We find the form and sizes of the calculated damages to be in good agreement with the experimental findings. Furthermore, the experimental and computational procedure for estimation of fatigue strength loss of damaged blades is proposed. It is based on study of stress concentration in damages. Stress concentration factor for different concentrator shapes was calculated using 3-D finite element analyses and refined via a stress concentration sensitivity factor. Stress concentration sensitivity factor was experimentally defined through fatigue tests of real blades with V-shape notches at leading edge. This technique supposes minimum laborious fatigue tests. Experimentally confirmed numerical methodology and model may be used for prediction study of FOD and fatigue strength loss of gas turbine engine blades.


Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 205-209
Author(s):  
Wojciech Obrocki ◽  
Amadeusz Setkowicz ◽  
Maciej Masłyk ◽  
Jan Sieniawski

Article presents the research results of aircraft compressor blade damage length and its position influence on fatigue strength under high number cycles conditions. The criteria for blade damage detection classification and test research methodology were developed. Designed and tested the instrumentation for compressor blades fatigue tests. Fluorescent method was used to determine the source of fatigue cracking initiation and its propagation direction during fatigue test.


2016 ◽  
Vol 684 ◽  
pp. 497-506 ◽  
Author(s):  
D.S. Goryainov ◽  
V.V. Anokhin ◽  
Aleksey Shlyapugin

For designing forging and die tooling for bulk forging a necessity in using the data of the geometry of the part produced arises. Obviously, the use as a data source for designing drawings of commonly applied in “manual alternate design” (without a computer) especially such complex parts as compressor blades is not perspective because of the complexity of developing theoretical contour specified by a point cloud. In this case the use of special tooling of direct modeling that provides changing the original model of the part developed by the designers is a perspective one. It should be taken into account during the process of forging and die tooling designing that it is necessary to register the special features of the technology, upon that, the technologist should be highly proficient in using the software. The work given describes the designing technique of gas turbine compressor blade with the account of using the potential of NX Siemens program.


2018 ◽  
Vol 769 ◽  
pp. 242-249
Author(s):  
Nikolay Vladimirovich Ruzanov ◽  
Michael Alexandrovich Bolotov ◽  
Vadim Andreevich Pechenin ◽  
Ekaterina Robertovna Matek

The article describes the touch probing system with the strain gage as the main measuring element. The device has small geometric dimensions and it was developed to measure the gas turbine engine compressor blades. To select the optimum configuration of the probing system, mathematical models of two principal configurations were developed. Simulation modeling of the force of the measured surface impact on the measuring tip was carried out in the Ansys environment for these assemblies. On the basis of practical experiments, the diagram of the deviation of the probe on the resistance of the strain gage was constructed. Reference element were measured to determine the accuracy of the designed touch probing system.


2019 ◽  
Vol 18 (1) ◽  
pp. 109-117
Author(s):  
M. B. Sazonov ◽  
L. V. Solovatskaya

Different types of final strengthening treatment of gas turbine engine (GTD) compressor blades are considered. The influence of each type of treatment on the formation of roughness of the surface with favorable microrelief, as well as on the level and depth of distribution of residual compressive stresses in the compressor blade airfoil is analyzed. The causes of blade fatigue failure are described and methods of controlling this kind of failure are presented. The results of testing special specimens made of VT9 titanic alloy are presented to establish the influence of final strengthening treatment modes on the compressor blade resistance to fatigue stress. The results of testing residual stress distribution along the thickness of compressor blade airfoil are presented. A method of improving dynamic strengthening of specimens due to the protection of compressor blade edges is discussed. The results of semi-graphical analysis of the stressed state of low-pressure and medium-pressure compressor blades made of VT9 alloy are presented. They take into account residual stresses, as well as operating load stresses in the process of operation. We show that it is possible to increase the limit of the blade endurance due to the optimization of residual stress diagrams by improving the final strengthening technology with the use of dust blasting.


1981 ◽  
Vol 13 (4) ◽  
pp. 401-407 ◽  
Author(s):  
V. T. Troshchenko ◽  
A. V. Prokopenko ◽  
V. N. Torgov ◽  
M. V. Baumshtein ◽  
L. B. Getsov

Sign in / Sign up

Export Citation Format

Share Document