scholarly journals Influence of aircraft engine compressor blades leading edge damage on their fatigue strength

Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 205-209
Author(s):  
Wojciech Obrocki ◽  
Amadeusz Setkowicz ◽  
Maciej Masłyk ◽  
Jan Sieniawski

Article presents the research results of aircraft compressor blade damage length and its position influence on fatigue strength under high number cycles conditions. The criteria for blade damage detection classification and test research methodology were developed. Designed and tested the instrumentation for compressor blades fatigue tests. Fluorescent method was used to determine the source of fatigue cracking initiation and its propagation direction during fatigue test.

Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 230-232
Author(s):  
Leszek Bielenda ◽  
Wojciech Obrocki ◽  
Maciej Masłyk ◽  
Jan Sieniawski

Results of comparison research of various sensors types used in the fatigue tests for aircraft engine compressor blade vibration amplitude measurement were analysed. Sensors under tests: inductive, capacitive, eddy-current, laser and vibration. Presented were sensors characteristics and their faults. Additional test stand instrumentation was designed and performed, including mounting bracket.


2021 ◽  
pp. 1-23
Author(s):  
Tim Brandes ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract More and more attention is being devoted to assessing severity of the engine operation for a high number of flights in a minimum of time. Compressor erosion is one of the physical phenomena contributing to this severity. Hence, an effective method is developed which allows a general judgment of the severity of engine operation with regards to compressor erosion. The shortening of the camber line at blade leading edge is selected as the parameter describing the degree of severity. The particle impingement conditions experienced by compressor blades throughout a flight mission are computed using a flight mission simulation and a non-dimensional engine model. Local flow conditions of all compressor blade rows are derived from mean line computations. A dimensional analysis of a straight through swirling annulus flow led to a simplified model of particle separation within the compressor blade rows. It turns out, that bypass ratio, bleed setting and degree of particle separation changing from operating point to operating point are significant drivers of erosion. Fan root and booster suffer less from compressor erosion than the high pressure compressor. The flight segments taxi, take-off, take-off climb, climb and cruise are significantly impacting the severity of a flight mission with regards to compressor erosion.


2020 ◽  
pp. 112-119
Author(s):  
S. V. Malysh ◽  
I. M. Kovenskiy ◽  
L. Z. Chaugarova

The article is devoted to the results of studies, which have been conducted on parts with electrolytic chromium in order to determine the effect of the coating on fatigue strength of their. The work was performed in observance of standards, which are fixed in GOST RV 2840-001-2008. Samples for the tests were made from standard gas turbine engine compressor blades. We used a VEDS- 1500 electrodynamic vibration stand with an UMK-12K power amplifier to excite vibrations. It has been shown that the minimum endurance limit of 46 kgf/mm2 based on 2 ∙ 107 cycles, established on uncoated parts, didn't decrease during fatigue tests of compressor blades with an electroplated chrome layer. It should be stressed that the influence of the geometry of the chrome-plated part on the reduction of the endurance limit has been established.


Author(s):  
Tim Brandes ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract More and more attention is being devoted to assessing severity of the engine operation for a high number of flights in a minimum of time. Compressor erosion is one of the physical phenomena contributing to this severity. Hence, an effective method is developed which allows a general judgment of the severity of engine operation with regards to compressor erosion. The shortening of the camber line at blade leading edge is selected as the parameter describing the degree of severity. The particle impingement conditions experienced by compressor blades throughout a flight mission are computed using a flight mission simulation and a non-dimensional engine model. Local flow conditions of all compressor blade rows are derived from mean line computations. A dimensional analysis of a straight through swirling annulus flow led to a simplified model of particle separation within the compressor blade rows. It turns out, that bypass ratio, bleed setting and degree of particle separation changing from operating point to operating point are significant drivers of erosion. Fan root and booster suffer less from compressor erosion than the high pressure compressor. The flight segments taxi, take-off, take-off climb, climb and cruise are significantly impacting the severity of a flight mission with regards to compressor erosion.


2016 ◽  
Vol 684 ◽  
pp. 497-506 ◽  
Author(s):  
D.S. Goryainov ◽  
V.V. Anokhin ◽  
Aleksey Shlyapugin

For designing forging and die tooling for bulk forging a necessity in using the data of the geometry of the part produced arises. Obviously, the use as a data source for designing drawings of commonly applied in “manual alternate design” (without a computer) especially such complex parts as compressor blades is not perspective because of the complexity of developing theoretical contour specified by a point cloud. In this case the use of special tooling of direct modeling that provides changing the original model of the part developed by the designers is a perspective one. It should be taken into account during the process of forging and die tooling designing that it is necessary to register the special features of the technology, upon that, the technologist should be highly proficient in using the software. The work given describes the designing technique of gas turbine compressor blade with the account of using the potential of NX Siemens program.


Author(s):  
Martin N. Goodhand ◽  
Robert J. Miller ◽  
Hang W. Lung

The loss mechanisms which control 2D incidence range are discussed with an emphasis on determining which real in-service geometric variations will have the largest impact. For the majority of engine compressor blades (Minlet>0.55) both the negative and positive incidence limits are controlled by supersonic patches. It is shown that these patches are highly sensitive to the geometric variations close to, and around the leading edge. The variations used in this study were measured from newly manufactured as well as ex-service blades. Over most the high pressure compressor considered, it was shown that manufacture variations dominated. The first part of the paper shows that, despite large geometric variations (∼10% of leading edge thickness), the incidence range responded in a linear way. The result of this is that the geometric variations have little effect on the mean incidence range of a row of blades. In the second part of the paper a region of the design space is identified where non-linear behavior can result in a 10% reduction in positive incidence range. The mechanism for this is reported and design guidelines for its avoidance offered. In the final part of the paper, the linear behavior at negative incidence and the transonic nature of the flow is exploited to design a robust asymmetric leading edge with a 5% increase in incidence range.


Author(s):  
Naoto Yoshida ◽  
Masahiro Sakano ◽  
Hideyuki Konishi ◽  
Takashi Fujii

Fatigue cracking in steel girder web penetration details is so dangerous that it can break steel girders. A one-meter-long crack was detected in Yamazoe Bridge in 2006. Since a number of highway bridges with such web penetration details may exist in Japan, it is of urgent importance to understand these fatigue-strength properties. However, few fatigue tests have been reported on steel girder web penetration details. The purpose of this study is to clarify fatigue behavior of steel girder web penetration details with a slit through fatigue tests of specimens with these details. We designed and fabricated girder specimens that have steel girder web penetration details, in which cross-beam bottom flanges are connected to each top or bottom surface of a slit by welding. First, we conducted static loading tests to understand the stress distributions around web penetration details. Second, we conducted fatigue tests to examine fatigue crack initiation and propagation behavior and fatigue strength.


Author(s):  
Chihiro Sakamoto ◽  
Masahiro Sakano ◽  
Hideyuki Konishi ◽  
Takashi Fujii

Fatigue cracking in steel girder web penetration details is so dangerous that it can break steel girders. Since a number of highway bridges have such web penetration details in Japan, it is of urgent importance to grasp these fatigue strength properties. In this study, we investigate stress reduction effects of three face attachment retrofit through fatigue tests using a large girder specimen with web penetration details where cross beam lower flanges are connected to the lower surface of a slot by welding. As a result, there is very little difference between two and three face attachments about stress reduction effects, while they are more effective than one face attachment. The upper side attachment is more effective than the lower side attachment, while both side attachment is best. Two and three face both side attachments can reduce about 40% of stress concentration, while two and three face upper side attachments can reduce 50– 60%.


Author(s):  
Mickhail S. Nikhamkin ◽  
Leonid V. Voronov ◽  
Irina V. Semenova

Foreign object damage (FOD) is always an all-important problem of gas turbine engines safety, reliability and operating costs. This paper describes experimental and numerical prediction investigations of FOD to compressor blades of gas turbine engine. Experimental modeling of FOD processes was done using a special plant on the base of a pneumatic gun. Real steel blades of a high-pressure compressor were impacted with spherical steel projectiles at the velocity about 200 m/s. Typical in-service damages as well as round dents, tears and bends were reproduced in the experiment. Numerical prediction analyses of the damage process were fulfilled by finite element method (FEM). Material behavior is described with elastic-plastic strain rate dependent model. We find the form and sizes of the calculated damages to be in good agreement with the experimental findings. Furthermore, the experimental and computational procedure for estimation of fatigue strength loss of damaged blades is proposed. It is based on study of stress concentration in damages. Stress concentration factor for different concentrator shapes was calculated using 3-D finite element analyses and refined via a stress concentration sensitivity factor. Stress concentration sensitivity factor was experimentally defined through fatigue tests of real blades with V-shape notches at leading edge. This technique supposes minimum laborious fatigue tests. Experimentally confirmed numerical methodology and model may be used for prediction study of FOD and fatigue strength loss of gas turbine engine blades.


2019 ◽  
Vol 26 (2) ◽  
pp. 7-14
Author(s):  
Arkadiusz Bednarz

Abstract The main goal of the presented work is to determine the impact of the cyclic hardening model on the numerical results of the ε-N fatigue test. As an object of study, compressor blade (from PZL-10W helicopter engine) was used. The examined blade was made of EI-961 alloy. In numerical analysis, a geometrical model of the blade with a preliminary defect was created. Geometrical defect – V-notch was created on the leading edge. This defect was introduced in order to weaken the structure of the element and the possibility of observing the crack initiation process (in experimental tests). Material data to ε-N analysis, based on Manson-Coffin-Basquin equation, were estimated for Mitchell’s model. This model was built based on strength data provided by the steel producer. Based on three different models of cyclic hardening (Manson, Fatemi, and Xianxin), a number of load cycles were calculated. Load cycle during numerical analysis was represented as resonance bending with an amplitude of displacement equal to A = 1.8 mm. Obtained results were compared with experimental data. Additionally, the analytical model of ε-N fatigue (depending on the cyclic hardening) was prepared. All the work carried out has been summarized by a comprehensive comparative analysis of the results. Obtained results and dependencies can be used in the selection of an appropriate model of cyclic hardening in further fatigue tests of many aerospace elements.


Sign in / Sign up

Export Citation Format

Share Document