scholarly journals Enhancement of the Dose on 12 MV Linac with Free Flattening Filter Mode

Author(s):  
A Zeghari ◽  
R Saaidi ◽  
R Cherkaoui El Moursli

Purpose: In the last years, some studies investigated dosimetric benefits of a free flattening filter for the photon mode in the radiotherapy field. This study aims to provide a theoretical study published and analysis of basic dosimetric properties for a Saturne 43 Linac head to implement free flattening filter beams clinically.Material and Methods: This is the first Monte Carlo study for the head of Saturne 43 with replacement flattening filter mode investigating beam dosimetric characteristics, including central axis absorbed doses, beam profiles and photon energy spectra. The later ones were analyzed for flattening filter and replacement flattening filter beams using BEAMnrc and DOSXYZnrc Monte Carlo codes for 10 × 10 cm2, 5 × 5 cm2 and 2 × 2 cm2 square field sizes.Results: A 3.94-fold increase of dose rate and electron contaminating increased by 246.4 % with the replacement flattening filter mode for field size of 10 × 10 cm2. Reduction was made by replacement flattening filter beam in the peripheral dose up to 30%, and the time was reduced more than 50 %.Conclusion: Results obtained from our study revealed that some characteristic dosimetries such as the maximum increase in depth dose rate, decrease in out-of-depth dose, and reducing time can be beneficial for the unflattened beam to be used in the radiotherapy for the advanced techniques.

2019 ◽  
Vol 9 (2Apr) ◽  
Author(s):  
A Kajaria ◽  
N Sharma ◽  
Sh Sharma ◽  
S Pradhan ◽  
A Mandal ◽  
...  

Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams.Materials and Methods: Monte Carlo simulation model using BEAM code was developed for a 6MV photon beam based on Varian Clinic 600 unique performance linac operated with and without a flattening filter in beam line. Dosimetric features including lateral profiles, central axis depth dose, photon and electron spectra were calculated for flattened and unflattened cases, separately.Results: An increase in absolute depth dose with a factor of more than 2.4 was observed for unflattened beam which was dependent on depth. PDDs values were found to be lower for unflattened beam for all field sizes. Significant decrease in calculated mlc leakage was observed when the flattening filter was removed from the beam line. The total scatter factor, SCP was found to show less variation with field sizes for unflattened beam indicating a decrease in head scatter. The beam profiles for unflattened case are found to have lower relative dose value in comparison with flattened beam near the field edge, and it falls off faster with distance.Conclusion: Our study showed that increase in the dose rate and lower peripheral dose could be considered as realistic advantages for unflattened 6MV photon beams.


2018 ◽  
Vol 8 (3Sep) ◽  
Author(s):  
A S Talebi ◽  
M Maleki ◽  
P Hejazi ◽  
M Jadidi ◽  
R Ghorbani

BackgroundOne of the most significant Intensity Modulated Radiation Therapy treatment benefits is a high target to normal tissue dose ratio. To improve this advantage, an additional accessory such as a compensator is used to delivering doses. Compensator-based IMRT treatment is usually operated with an energy higher than 10 MV. Photoneutrons, which have high linear energy transfer and radiobiological effectiveness, are produced by colliding high-energy photon beams with linear accelerator structures, then they deliver the unwanted doses to patients and staff. Therefore, the neutron energy spectra should be determined in order to calculate and reduce the photoneutron risk.Objective: We have conducted a comprehensive and precise study on the influence of brass compensator thickness and field size on neutron contamination spectrum in an Elekta SL 75/25 medical linear accelerator with and without the flattening filter by Monte Carlo method.Materials and Methods: MCNPX MC Code version 2.6.0 was utilized to simulate the detailed geometry of Elekta SL 75/25 head components based on Linac’s manual. This code includes an important feature to simulate the photo-neutron interactions. Photoneutrons spectrum was calculated after the Linac output benchmarking based on tuning the primary electron beam.Results and Conclusion: Based on the Friedman and Wilcoxon nonparametric tests results (P<0.05), photoneutron fluence directly depends on the field size and compensator thickness. Moreover, the unflattened beam provides lower photoneutron fluence than the flattened beam. Photoneutrons fluence is not negligible in compensator-based IMRT treatment. However, in order to optimize treatment plans, this additional and unwanted dose must be accounted for patients.


2020 ◽  
Vol 10 (20) ◽  
pp. 7052
Author(s):  
James C. L. Chow

The aim of this study is to investigate the variations of depth dose enhancement (DDE) on different nanoparticle (NP) variables, when using the flattening-filter-free (FFF) photon beam in nanoparticle-enhanced radiotherapy. Monte Carlo simulation under a macroscopic approach was used to determine the DDE ratio (DDER) with variables of NP material (gold (Au) and iron (III) oxide (Fe2O3)), NP concentration (3–40 mg/mL) and photon beam (10 MV flattening-filter (FF) and 10 MV FFF). It is found that Au NPs had a higher DDER than Fe2O3 NPs, when the depths were shallower than 6 and 8 cm for the 10 MV FF and 10 MV FFF photon beams, respectively. However, in a deeper depth range of 10–20 cm, DDER for the Au NPs was lower than Fe2O3 NPs mainly due to the beam attenuation and photon energy distribution. It is concluded that DDER for the Au NPs and Fe2O3 NPs decreased with an increase of depth in the range of 10–20 cm, with rate of decrease depending on the NP material, NP concentration and the use of FF in the photon beam.


2017 ◽  
Vol 44 (10) ◽  
pp. 5378-5383 ◽  
Author(s):  
Immaculada Martínez-Rovira ◽  
Josep Puxeu-Vaqué ◽  
Yolanda Prezado

2009 ◽  
Vol 92 ◽  
pp. S57 ◽  
Author(s):  
M. Lind ◽  
T. Knöös ◽  
C. Ceberg ◽  
E. Wieslander ◽  
B. McClean ◽  
...  

2005 ◽  
Vol 50 (21) ◽  
pp. 5075-5087 ◽  
Author(s):  
Michael J Price ◽  
John L Horton ◽  
Kent A Gifford ◽  
Patricia J Eifel ◽  
Anuja Jhingran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document