scholarly journals Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle

2009 ◽  
Vol 92 (9) ◽  
pp. 4621-4633 ◽  
Author(s):  
B. Griesbeck-Zilch ◽  
M. Osman ◽  
Ch. Kühn ◽  
M. Schwerin ◽  
R.H. Bruckmaier ◽  
...  
2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


2016 ◽  
Vol 181 (11-12) ◽  
pp. 823-832 ◽  
Author(s):  
Zhaoju Deng ◽  
Muhammad Shahid ◽  
Limei Zhang ◽  
Jian Gao ◽  
Xiaolong Gu ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
pp. 79 ◽  
Author(s):  
Satoshi Gondaira ◽  
Hidetoshi Higuchi ◽  
Hidetomo Iwano ◽  
Koji Nishi ◽  
Takanori Nebu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Nayeli Alva-Murillo ◽  
Alejandra Ochoa-Zarzosa ◽  
Joel E. López-Meza

Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response to invading bacteria. Short chain fatty acids can reduceStaphylococcus aureusinternalization into bMEC, but it has not been evaluated if octanoic acid (sodium octanoate, NaO), a medium chain fatty acid (MCFA), has similar effects. In this study we determined the effect of NaO onS. aureusinternalization into bMEC and on the modulation of innate immune elements. NaO (0.25–2 mM) did not affectS. aureusgrowth and bMEC viability, but it differentially modulated bacterial internalization into bMEC, which was induced at 0.25–0.5 mM (~60%) but inhibited at 1-2 mM (~40%). Also, bMEC showed a basal expression of all the innate immune genes evaluated, which were induced byS. aureus. NaO induced BNBD4, LAP, and BNBD10 mRNA expression, but BNBD5 and TNF-αwere inhibited. Additionally, the pretreatment of bMEC with NaO inhibited the mRNA expression induction generated by bacteria which coincides with the increase in internalization; only TAP and BNDB10 showed an increase in their expression; it coincides with the greatest effect on the reduction of bacterial internalization. In conclusion, NaO exerts a dual effect onS. aureusinternalization in bMEC and modulates elements of innate immune response.


Author(s):  
Jonathan Lambourne ◽  
Ruaridh Buchanan

There are four major components of the immune system. These include: 1. mechanical barriers to pathogen entry. 2. the innate immune system. 3. the adaptive immune system. 4. the lymphoid organs. Mechanical barriers include skin and mucous membranes and tight junctions between epithelial cells prevent pathogen entry. Breaches can be iatrogenic, for example, IV lines, surgical wounds, and mucositis, and are a large source of healthcare- associated infections. The innate immune system provides the first internal line of defence, as well as initiating and shaping the adaptive immune response. The innate system comprises a range of responses: phagocytosis by neutrophils and macrophages (guided in part by the adaptive immune system), the complement cascade, and the release of antimicrobial peptides by epithelial cells (e.g. defensins, cathelicidin). The adaptive immune system includes both humoral (antibody- mediated) and cell-mediated responses. It is capable of greater diversity and specificity than the innate immune system, and can develop memory to pathogens and provide increased protection on re-exposure. Immune cells are divided into myeloid cells (neutrophils, eosinophils, basophils, mast cells, and monocytes/macrophages) and lymphoid cells (B, T, and NK cells). These all originate in the bone marrow from pluripotent haematopoietic stem cells. The lymphoid organs include the spleen, the lymph nodes, and mucosal-associated lymphoid tissues—which respond to antigens in the blood, tissues, and epithelial surfaces respectively. The three main ‘professional’ phagocytes are macrophages, dendritic cells, and neutrophils. They are similar with respect to how they recognize pathogens, but differ in their principal location and effector functions. Phagocytes express an array of Pattern Recognition Receptors (PRRs) e.g. Toll-like receptors and lectins (proteins that bind carbohydrates). PRRs recognize Pathogen- Associated Molecular Patterns (PAMPs)— elements which are conserved across species, such as cell-surface glycoproteins and nucleic acid sequences. Though limited in number, PRRs have evolved to recognize a huge array of pathogens. Binding of PRRs to PAMPs enhances phagocytosis. Macrophages are tissue-resident phagocytes, initiating and co-ordinating the local immune response. The cytokines and chemokines they produce cause vasodilation and alter the expression of endothelial cell adhesion factors, recruiting circulating immune cells.


2018 ◽  
Vol 9 (6) ◽  
pp. 985-995 ◽  
Author(s):  
R.F.S. Souza ◽  
L. Rault ◽  
N. Seyffert ◽  
V. Azevedo ◽  
Y. Le Loir ◽  
...  

Probiotics have been adopted to treat and prevent various diseases in humans and animals. They were notably shown to be a promising alternative to prevent mastitis in dairy cattle. This inflammation of the mammary gland is generally of infectious origin and generates extensive economic losses worldwide. In a previous study, we found that Lactobacillus casei BL23 was able to inhibit the internalisation of Staphylococcus aureus, one of the major pathogens involved in mastitis, into bovine mammary epithelial cells (bMEC). In this study, we further explored the capacity of this strain to modulate the innate immune response of bovine mammary epithelial cells during S. aureus infection. L. casei BL23 was able to decrease the expression of several pro-inflammatory cytokines, including interleukins 6, 8, 1α and 1β and tumour necrosis factor alpha, in S. aureus-stimulated bMEC, 8 h post-infection. On the other hand, L. casei did not impair the induction of defensins, such as lingual antimicrobial peptide and defensin β1 in the presence of S. aureus, and even slightly increased the induction of tracheal antimicrobial peptide during S. aureus infection. Finally, this strain did not alter the expression of the pattern recognition receptor nucleotide-binding oligomerisation domain proteins (NOD2). This study demonstrates that L. casei BL23 displayed anti-inflammatory properties on S. aureus-stimulated bMEC. These results open the way to further characterisation of the BL23 probiotic potential in a bovine mammary gland context and to a better understanding of how all these beneficial properties combine in vivo to combat mastitis pathogens.


Cytokine ◽  
2005 ◽  
Vol 31 (1) ◽  
pp. 72-86 ◽  
Author(s):  
Ylva Strandberg ◽  
Christian Gray ◽  
Tony Vuocolo ◽  
Laurelea Donaldson ◽  
Mary Broadway ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document