scholarly journals Rapid eye movement sleep time in dairy cows changes during the lactation cycle

2019 ◽  
Vol 102 (6) ◽  
pp. 5458-5465 ◽  
Author(s):  
Emma Ternman ◽  
Emma Nilsson ◽  
Per Peetz Nielsen ◽  
Matti Pastell ◽  
Laura Hänninen ◽  
...  
SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A300-A300
Author(s):  
L Zhang ◽  
J Zhu

Abstract Introduction Impaired rapid eye movement sleep is common among patients with Parkinson’s disease (PD). However, information on rapid eye movement density (REM density) among PD patients is currently lacking. The current study sought to characterize REM density in PD patients and to examine the associations between REM density sleep parameters and clinical manifestations. Methods We retrospectively recruited 172 PD patients. All participants were assessed with a two-night polysomnography, and REM density was calculated. Clinical assessments were completed in PD patients before polysomnography. Results Rapid eye movement sleep behavior disorder (RBD) were observed in 93 patients (54.1%). The disease duration, UPDRS part III score, Hoehn and Yahr (H-Y) stage, and HAMA, HAMD, and PDQ-39 scores in the Parkinson’s disease patients with rapid eye movement sleep behavior disorder (RBD) were significantly higher than in the patients without RBD (P<0.05). The REM density was also significantly higher in the RBD patients than in the patients without RBD (P<0.05). NREM sleep stage 3 time (N3 time) and percentage of N3 time of total sleep time (N3%) were higher in patients without RBD. The forward binary logistic regression model showed that REM density, UPDRS-III score and N3 sleep time were associated with RBD in the PD patients. Conclusion Our results confirm the high prevalence of RBD in patients with PD. Increased REM density was the main risk factor of RBD. Support Special Funds of the Jiangsu Provincial Key Research and Development Projects (grant No. BE2018610)


2012 ◽  
Vol 302 (12) ◽  
pp. R1411-R1425 ◽  
Author(s):  
S. Deurveilher ◽  
B. Rusak ◽  
K. Semba

To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase (“3/1” protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the “3/1” CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.


2019 ◽  
Vol 131 (2) ◽  
pp. 401-409 ◽  
Author(s):  
Lauren K. Dunn ◽  
Amanda M. Kleiman ◽  
Katherine T. Forkin ◽  
Allison J. Bechtel ◽  
Stephen R. Collins ◽  
...  

AbstractEditor’s PerspectiveWhat We Already Know about This TopicWhat This Article Tells Us That Is NewBackgroundResidency programs utilize night float systems to adhere to duty hour restrictions; however, the influence of night float on resident sleep has not been described. The study aim was to determine the influence of night float on resident sleep patterns and quality of sleep. We hypothesized that total sleep time decreases during night float, increases as residents acclimate to night shift work, and returns to baseline during recovery.MethodsThis was a single-center observational study of 30 anesthesia residents scheduled to complete six consecutive night float shifts. Electroencephalography sleep patterns were recorded during baseline (three nights), night float (six nights), and recovery (three nights) using the ZMachine Insight monitor (General Sleep Corporation, USA). Total sleep time; light, deep, and rapid eye movement sleep; sleep efficiency; latency to persistent sleep; and wake after sleep onset were observed.ResultsMean total sleep time ± SD was 5.9 ± 1.9 h (3.0 ± 1.2.1 h light; 1.4 ± 0.6 h deep; 1.6 ± 0.7 h rapid eye movement) at baseline. During night float, mean total sleep time was 4.5 ± 1.8 h (1.4-h decrease, 95% CI: 0.9 to 1.9, Cohen’s d = –1.1, P < 0.001) with decreases in light (2.2 ± 1.1 h, 0.7-h decrease, 95% CI: 0.4 to 1.1, d = –1.0, P < 0.001), deep (1.1 ± 0.7 h, 0.3-h decrease, 95% CI: 0.1 to 0.4, d = –0.5, P = 0.005), and rapid eye movement sleep (1.2 ± 0.6 h, 0.4-h decrease, 95% CI: 0.3 to 0.6, d = –0.9, P < 0.001). Mean total sleep time during recovery was 5.4 ± 2.2 h, which did not differ significantly from baseline; however, deep (1.0 ± 0.6 h, 0.4-h decrease, 95% CI: 0.2 to 0.6, d = –0.6, P = 0.001 *, P = 0.001) and rapid eye movement sleep (1.2 ± 0.8 h, 0.4-h decrease, 95% CI: 0.2 to 0.6, d = –0.9, P < 0.001 P < 0.001) were significantly decreased.ConclusionsElectroencephalography monitoring demonstrates that sleep quantity is decreased during six consecutive night float shifts. A 3-day period of recovery is insufficient for restorative sleep (rapid eye movement and deep sleep) levels to return to baseline.


CHEST Journal ◽  
2009 ◽  
Vol 136 (4) ◽  
pp. 67S
Author(s):  
Zinobia Khan ◽  
Moses Bachan ◽  
Sara Hyatt ◽  
Joseph Ghassibi ◽  
Stephen Lund ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 185
Author(s):  
Dean J. Miller ◽  
Gregory D. Roach ◽  
Michele Lastella ◽  
Aaron T. Scanlan ◽  
Clint R. Bellenger ◽  
...  

The aims of this study were to: (1) compare actigraphy (ACTICAL) and a commercially available sleep wearable (i.e., WHOOP) under two functionalities (i.e., sleep auto-detection (WHOOP-AUTO) and manual adjustment of sleep (WHOOP-MANUAL)) for two-stage categorisation of sleep (sleep or wake) against polysomnography, and; (2) compare WHOOP-AUTO and WHOOP-MANUAL for four-stage categorisation of sleep (wake, light sleep, slow wave sleep (SWS), or rapid eye movement sleep (REM)) against polysomnography. Six healthy adults (male: n = 3; female: n = 3; age: 23.0 ± 2.2 yr) participated in the nine-night protocol. Fifty-four sleeps assessed by ACTICAL, WHOOP-AUTO and WHOOP-MANUAL were compared to polysomnography using difference testing, Bland–Altman comparisons, and 30-s epoch-by-epoch comparisons. Compared to polysomnography, ACTICAL overestimated total sleep time (37.6 min) and underestimated wake (−37.6 min); WHOOP-AUTO underestimated SWS (−15.5 min); and WHOOP-MANUAL underestimated wake (−16.7 min). For ACTICAL, sensitivity for sleep, specificity for wake and overall agreement were 98%, 60% and 89%, respectively. For WHOOP-AUTO, sensitivity for sleep, wake, and agreement for two-stage and four-stage categorisation of sleep were 90%, 60%, 86% and 63%, respectively. For WHOOP-MANUAL, sensitivity for sleep, wake, and agreement for two-stage and four-stage categorisation of sleep were 97%, 45%, 90% and 62%, respectively. WHOOP-AUTO and WHOOP-MANUAL have a similar sensitivity and specificity to actigraphy for two-stage categorisation of sleep and can be used as a practical alternative to polysomnography for two-stage categorisation of sleep and four-stage categorisation of sleep.


Sign in / Sign up

Export Citation Format

Share Document