Quantitative and sensitive assessment of neurophysiological status after human spinal cord injury

2012 ◽  
Vol 17 (Suppl1) ◽  
pp. 77-86 ◽  
Author(s):  
Kun Li ◽  
Darryn Atkinson ◽  
Maxwell Boakye ◽  
Carie Z. Tolfo ◽  
Sevda Aslan ◽  
...  

Object This study was designed to develop an objective and sensitive spinal cord injury (SCI) characterization protocol based on surface electromyography (EMG) activity. Methods Twenty-four patients at both acute and chronic time points post-SCI, as well as 4 noninjured volunteers, were assessed using neurophysiological and clinical measures of volitional motor function. The EMG amplitude was recorded from 15 representative muscles bilaterally during standardized maneuvers as a neurophysiological assessment of voluntary motor function. International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) examinations were performed as a clinical assessment of lesion severity. Results Sixty-six functional neurophysiological assessments were performed in 24 patients with SCI and in 4 neurologically intact individuals. The collected EMG data were organized by quantitative parameters and statistically analyzed. The correlation between root mean square (RMS) of the EMG signals and ISNCSCI motor score was confirmed by Kendall correlation analysis. The Kendall correlation value between overall muscles/levels, motor scores, and the RMS of the EMG data is 0.85, with the 95% CI falling into the range of 0.76–0.95. Significant correlations were also observed for the soleus (0.51 [0.28–0.74]), tibialis anterior (TA) (0.53 [0.33–0.73]), tricep (0.52, [0.34–0.70]), and extensor carpi radialis (ECR) (0.80 [0.42–1.00]) muscles. Comparisons of RMS EMG values in groups defined by ISNCSCI motor score further confirmed these results. At the bicep and ECR, patients with motor scores of 5 had nearly significantly higher RMS EMG values than patients with motor scores of 0 (p = 0.059 and 0.052, respectively). At the soleus and TA, the RMS of the EMG value was significantly higher (p < 0.01) for patients with American Spinal Injury Association Impairment Scale motor scores of 5 than for those with ISNCSCI motor scores of 0. Those with C-7 ISNCSCI motor scores of 5 had significantly higher RMS EMG values at the tricep than those with motor scores of 4 (p = 0.008) and 0 (p = 0.02). Results also show that surface EMG signals recorded from trunk muscles allowed the examiner to pick up subclinical changes, even though no ISNCSCI scores were given. Conclusions Surface EMG signal is suitable for objective neurological SCI characterization protocol design. The quantifiable features of surface EMG may increase SCI characterization resolution by adding subclinical details to the clinical picture of lesion severity and distribution.

2017 ◽  
Vol 31 (6) ◽  
pp. 583-591 ◽  
Author(s):  
Elizabeth Heald ◽  
Ronald Hart ◽  
Kevin Kilgore ◽  
P. Hunter Peckham

Background. Previous studies have demonstrated the presence of intact axons across a spinal cord lesion, even in those clinically diagnosed with complete spinal cord injury (SCI). These axons may allow volitional motor signals to be transmitted through the injury, even in the absence of visible muscle contraction. Objective. To demonstrate the presence of volitional electromyographic (EMG) activity below the lesion in motor complete SCI and to characterize this activity to determine its value for potential use as a neuroprosthetic command source. Methods. Twenty-four subjects with complete (AIS A or B), chronic, cervical SCI were tested for the presence of volitional below-injury EMG activity. Surface electrodes recorded from 8 to 12 locations of each lower limb, while participants were asked to attempt specific movements of the lower extremity in response to visual and audio cues. EMG trials were ranked through visual inspection, and were scored using an amplitude threshold algorithm to identify channels of interest with volitional motor unit activity. Results. Significant below-injury muscle activity was identified through visual inspection in 16 of 24 participants, and visual inspection rankings were well correlated to the algorithm scoring. Conclusions. The surface EMG protocol utilized here is relatively simple and noninvasive, ideal for a clinical screening tool. The majority of subjects tested were able to produce a volitional EMG signal below their injury level, and the algorithm developed allows automatic identification of signals of interest. The presence of this volitional activity in the lower extremity could provide an innovative new command signal source for implanted neuroprostheses or other assistive technology.


2017 ◽  
Vol 117 (2) ◽  
pp. 767-776 ◽  
Author(s):  
L. M. Mercier ◽  
E. J. Gonzalez-Rothi ◽  
K. A. Streeter ◽  
S. S. Posgai ◽  
A. S. Poirier ◽  
...  

Intraspinal microstimulation (ISMS) using implanted electrodes can evoke locomotor movements after spinal cord injury (SCI) but has not been explored in the context of respiratory motor output. An advantage over epidural and direct muscle stimulation is the potential of ISMS to selectively stimulate components of the spinal respiratory network. The present study tested the hypothesis that medullary respiratory activity could be used to trigger midcervical ISMS and diaphragm motor unit activation in rats with cervical SCI. Studies were conducted after acute (hours) and subacute (5–21 days) C2 hemisection (C2Hx) injury in adult rats. Inspiratory bursting in the genioglossus (tongue) muscle was used to trigger a 250-ms train stimulus (100 Hz, 100–200 μA) to the ventral C4 spinal cord, targeting the phrenic motor nucleus. After both acute and subacute injury, genioglossus EMG activity effectively triggered ISMS and activated diaphragm motor units during the inspiratory phase. The ISMS paradigm also evoked short-term potentiation of spontaneous inspiratory activity in the previously paralyzed hemidiaphragm (i.e., bursting persisting beyond the stimulus period) in ∼70% of the C2Hx animals. We conclude that medullary inspiratory output can be used to trigger cervical ISMS and diaphragm activity after SCI. Further refinement of this method may enable “closed-loop-like” ISMS approaches to sustain ventilation after severe SCI. NEW & NOTEWORTHY We examined the feasibility of using intraspinal microstimulation (ISMS) of the cervical spinal cord to evoke diaphragm activity ipsilateral to acute and subacute hemisection of the upper cervical spinal cord of the rat. This proof-of-concept study demonstrated the efficacy of diaphragm activation, using an upper airway respiratory EMG signal to trigger ISMS at the level of the ipsilesional phrenic nucleus during acute and advanced postinjury intervals.


2021 ◽  
pp. 096032712110033
Author(s):  
Liying Fan ◽  
Jun Dong ◽  
Xijing He ◽  
Chun Zhang ◽  
Ting Zhang

Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.


2021 ◽  
pp. 113831
Author(s):  
Chun Cui ◽  
Lin-Fang Wang ◽  
Shu-Bing Huang ◽  
Peng Zhao ◽  
Yong-Quan Chen ◽  
...  

Author(s):  
Tetsuichi Saito ◽  
Daisuke Gotoh ◽  
Naoki Wada ◽  
Pradeep Tyagi ◽  
Tomonori Minagawa ◽  
...  

This study evaluated the time-course changes in bladder and external urinary sphincter (EUS) activity as well as the expression of mechanosensitive channels in lumbosacral dorsal root ganglia (DRG) after spinal cord injury (SCI). Female C57BL/6N mice in the SCI group underwent transection of the Th8/9 spinal cord. Spinal intact mice and SCI mice at 2, 4 and 6 weeks post SCI were evaluated by single-filling cystometry and EUS-electromyography (EMG). In another set of mice, the bladder and L6-S1 DRG were harvested for protein and mRNA analyses. In SCI mice, non-voiding contractions was confirmed at 2 weeks post-SCI, and did not increase over time to 6 weeks. In 2-weeks SCI mice, EUS-EMG measurements revealed detrusor-sphincter dyssynergia (DSD), but periodic EMG reductions during bladder contraction were hardly observed. At 4 weeks, SCI mice showed increases of EMG activity reduction time with increased voiding efficiency (VE). At 6 weeks, SCI mice exhibited a further increase in EMG reduction time. RT-PCR of L6-S1 DRG showed increased mRNA levels of TRPV1 and ASIC1-3 in SCI mice with a decrease of ASIC2-3 at 6 weeks compared to 4 weeks whereas Piezo2 showed a slow increase at 6 weeks. Protein assay showed the SCI-induced overexpression of bladder BDNF with a time-dependent decrease post SCI. These results indicate that detrusor overactivity is established in the early phase whereas DSD is completed later at 4 weeks with an improvement at 6 weeks post SCI, and that mechanosensitive channels may be involved in the time-dependent changes.


Sign in / Sign up

Export Citation Format

Share Document