Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison

2014 ◽  
Vol 20 (6) ◽  
pp. 636-643 ◽  
Author(s):  
Bawarjan Schatlo ◽  
Granit Molliqaj ◽  
Victor Cuvinciuc ◽  
Marc Kotowski ◽  
Karl Schaller ◽  
...  

Object Recent years have been marked by efforts to improve the quality and safety of pedicle screw placement in spinal instrumentation. The aim of the present study is to compare the accuracy of the SpineAssist robot system with conventional fluoroscopy-guided pedicle screw placement. Methods Ninety-five patients suffering from degenerative disease and requiring elective lumbar instrumentation were included in the study. The robot cohort (Group I; 55 patients, 244 screws) consisted of an initial open robot-assisted subgroup (Subgroup IA; 17 patients, 83 screws) and a percutaneous cohort (Subgroup IB, 38 patients, 161 screws). In these groups, pedicle screws were placed under robotic guidance and lateral fluoroscopic control. In the fluoroscopy-guided cohort (Group II; 40 patients, 163 screws) screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. The primary outcome measure was accuracy of screw placement on the Gertzbein-Robbins scale (Grade A to E and R [revised]). Secondary parameters were duration of surgery, blood loss, cumulative morphine, and length of stay. Results In the robot group (Group I), a perfect trajectory (A) was observed in 204 screws (83.6%). The remaining screws were graded B (n = 19 [7.8%]), C (n = 9 [3.7%]), D (n = 4 [1.6%]), E (n = 2 [0.8%]), and R (n = 6 [2.5%]). In the fluoroscopy-guided group (Group II), a completely intrapedicular course graded A was found in 79.8% (n = 130). The remaining screws were graded B (n = 12 [7.4%]), C (n = 10 [6.1%]), D (n = 6 [3.7%]), and E (n = 5 [3.1%]). The comparison of “clinically acceptable” (that is, A and B screws) was neither different between groups (I vs II [p = 0.19]) nor subgroups (Subgroup IA vs IB [p = 0.81]; Subgroup IA vs Group II [p = 0.53]; Subgroup IB vs Group II [p = 0.20]). Blood loss was lower in the robot-assisted group than in the fluoroscopy-guided group, while duration of surgery, length of stay, and cumulative morphine dose were not statistically different. Conclusions Robot-guided pedicle screw placement is a safe and useful tool for assisting spine surgeons in degenerative spine cases. Nonetheless, technical difficulties remain and fluoroscopy backup is advocated.

2017 ◽  
Vol 42 (5) ◽  
pp. E13 ◽  
Author(s):  
Volodymyr Solomiichuk ◽  
Julius Fleischhammer ◽  
Granit Molliqaj ◽  
Jwad Warda ◽  
Awad Alaid ◽  
...  

OBJECTIVERobot-guided pedicle screw placement is an established technique for the placement of pedicle screws. However, most studies have focused on degenerative disease. In this paper, the authors focus on metastatic spinal disease, which is associated with osteolysis. The associated lack of dense bone may potentially affect the automatic recognition accuracy of radiography-based surgical assistance systems. The aim of the present study is to compare the accuracy of the SpineAssist robot system with conventional fluoroscopy-guided pedicle screw placement for thoracolumbar metastatic spinal disease.METHODSSeventy patients with metastatic spinal disease who required instrumentation were included in this retrospective matched-cohort study. All 70 patients underwent surgery performed by the same team of experienced surgeons. The decision to use robot-assisted or fluoroscopy-guided pedicle screw placement was based the availability of the robot system. In patients who underwent surgery with robot guidance, pedicle screws were inserted after preoperative planning and intraoperative fluoroscopic matching. In the “conventional” group, anatomical landmarks and anteroposterior and lateral fluoroscopy guided placement of the pedicle screws. The primary outcome measure was the accuracy of screw placement on the Gertzbein-Robbins scale. Grades A and B (< 2-mm pedicle breach) were considered clinically acceptable, and all other grades indicated misplacement. Secondary outcome measures included an intergroup comparison of direction of screw misplacement, surgical site infection, and radiation exposure.RESULTSA total of 406 screws were placed at 206 levels. Sixty-one (29.6%) surgically treated levels were in the upper thoracic spine (T1–6), 74 (35.9%) were in the lower thoracic spine, and the remaining 71 (34.4%) were in the lumbosacral region. In the robot-assisted group (Group I; n = 35, 192 screws), trajectories were Grade A or B in 162 (84.4%) of screws. The misplacement rate was 15.6% (30 of 192 screws). In the conventional group (Group II; n = 35, 214 screws), 83.6% (179 of 214) of screw trajectories were acceptable, with a misplacement rate of 16.4% (35 of 214). There was no difference in screw accuracy between the groups (chi-square, 2-tailed Fisher’s exact, p = 0.89). One screw misplacement in the fluoroscopy group required a second surgery (0.5%), but no revisions were required in the robot group. There was no difference in surgical site infections between the 2 groups (Group I, 5 patients [14.3%]; Group II, 8 patients [22.9%]) or in the duration of surgery between the 2 groups (Group I, 226.1 ± 78.8 minutes; Group II, 264.1 ± 124.3 minutes; p = 0.13). There was also no difference in radiation time between the groups (Group I, 138.2 ± 73.0 seconds; Group II, 126.5 ± 95.6 seconds; p = 0.61), but the radiation intensity was higher in the robot group (Group I, 2.8 ± 0.2 mAs; Group II, 2.0 ± 0.6 mAs; p < 0.01).CONCLUSIONSPedicle screw placement for metastatic disease in the thoracolumbar spine can be performed effectively and safely using robot-guided assistance. Based on this retrospective analysis, accuracy, radiation time, and postoperative infection rates are comparable to those of the conventional technique.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Jordan Cory ◽  
Mohammed A Awad ◽  
Richard G Bittar

Abstract INTRODUCTION Robot-assisted surgery has emerged as an innovative and minimally-invasive technique, touted as superior to the traditional free-hand technique of pedicle screw fixation in spinal fusion surgery. Complications of misplaced pedicle screws include inadequate fixation and surgical failure requiring revision, neural injury, cerebrospinal fluid (CSF) leak, vascular injury, and facet joint trauma with sequela of adjacent segment disease. Literature reports an incidence of pedicle screw misplacement in up to 10% with free-hand technique. Robot-assisted surgery has reported superiority with increased accuracy of pedicle screw placement and reduced complication rates. This prospective multi-institutional single cohort analysis reports the outcomes in robot-assisted spinal fusion surgery in Melbourne, Australia over 4 yr. METHODS Data was prospectively collected from 2015 to 2019 from robot-assisted spinal surgeries performed by 2 surgeons across 2 institutions. Postoperative spinal computed tomography (CT) scan was compared to preoperative CT based planning to determine the accuracy of pedicle screw placement to 0.1 mm. Accurate pedicle screw placement was defined as within 2.0 mm from the target. Intraoperative radiation exposure time, operative time and length of hospital stay were also collected. RESULTS The total number of cases was 164 and the total number of screws placed was 744. Accurate pedicle screw placement was 98.65%. Average intraoperative radiation exposure time was 9.9 s. Average operative time for single-level surgery was 74 min. The average length of hospital stay was 2.4 d. CONCLUSION The authors conclude that robot-assisted pedicle screw placement is a safe and highly accurate adjunct to spinal surgery. While robot-assisted spinal surgery significantly improves patient outcomes with reduced patient morbidity and revision rates, it has limitations in primary capital expenditure, consumable costs and, in training and accreditation. It is the authors’ opinion that the robot-assisted spinal surgery technique requires nuanced patient selection and expertise in the traditional free-hand method is still essential in the event of technological failure.


2019 ◽  
Vol 30 (5) ◽  
pp. 615-622 ◽  
Author(s):  
Xiaoguang Han ◽  
Wei Tian ◽  
Yajun Liu ◽  
Bo Liu ◽  
Da He ◽  
...  

OBJECTIVEThe object of this study was to compare the safety and accuracy of pedicle screw placement using the TiRobot system versus conventional fluoroscopy in thoracolumbar spinal surgery.METHODSPatients with degenerative or traumatic thoracolumbar spinal disorders requiring spinal instrumentation were randomly assigned to either the TiRobot-assisted group (RG) or the freehand fluoroscopy-assisted group (FG) at a 1:1 ratio. The primary outcome measure was the accuracy of screw placement according to the Gertzbein-Robbins scale; grades A and B (pedicle breach < 2 mm) were considered clinically acceptable. In the RG, discrepancies between the planned and actual screw placements were measured by merging postoperative CT images with the trajectory planning images. Secondary outcome parameters included proximal facet joint violation, duration of surgery, intraoperative blood loss, conversion to freehand approach in the RG, postoperative hospital stay, and radiation exposure.RESULTSA total of 1116 pedicle screws were implanted in 234 patients (119 in the FG, and 115 in the RG). In the RG, 95.3% of the screws were perfectly positioned (grade A); the remaining screws were graded B (3.4%), C (0.9%), and D (0.4%). In the FG, 86.1% screws were perfectly positioned (grade A); the remaining screws were graded B (7.4%), C (4.6%), D (1.4%), and E (0.5%). The proportion of clinically acceptable screws was significantly greater in the RG than in the FG (p < 0.01). In the RG, the mean deviation was 1.5 ± 0.8 mm for each screw. The most common direction of screw deviation was lateral in the RG and medial in the FG. Two misplaced screws in the FG required revision surgery, whereas no revision was required in the RG. None of the screws in the RG violated the proximal facet joint, whereas 12 screws (2.1%) in the FG violated the proximal facet joint (p < 0.01). The RG had significantly less blood loss (186.0 ± 255.3 ml) than the FG (217.0 ± 174.3 ml; p < 0.05). There were no significant differences between the two groups in terms of surgical time and postoperative hospital stay. The mean cumulative radiation time was 81.5 ± 38.6 seconds in the RG and 71.5 ± 44.2 seconds in the FG (p = 0.07). Surgeon radiation exposure was significantly less in the RG (21.7 ± 11.5 μSv) than in the FG (70.5 ± 42.0 μSv; p < 0.01).CONCLUSIONSTiRobot-guided pedicle screw placement is safe and useful in thoracolumbar spinal surgery.Clinical trial registration no.: NCT02890043 (clinicaltrials.gov)


2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


2021 ◽  
pp. 219256822110255
Author(s):  
Derong Xu ◽  
Xuexiao Ma ◽  
Lei Xie ◽  
Chuanli Zhou ◽  
Biao Kong

Study Design: Retrospective database study. Objectives: To compare the accuracy and safety of 2 types of a computer-assisted navigation system for percutaneous pedicle screw placement during endoscopic lumbar interbody fusion. Methods: From May 2019 to January 2020, data of 56 patients who underwent Endo-LIF with a robot-assisted system and with an electromagnetic navigation system were compared. The pedicles in all patients were subjected to postoperative CT scan to assess screw correction by measuring the perpendicular distance between the pedicle cortical wall and the screw surface. The registration and matching time, guide-wire insertion time, the entire surgery time, and X-ray exposure time were recorded. Results: In the robot-assisted group, 25 cases with 100 percutaneous pedicle screws were included, and the excellent and good rate was 95%. In the electromagnetic navigation group, 31 cases with 124 screws were included, and the excellent rate was 97.6%. There was no statistical difference between the two groups ( P > 0.05). The registration time and the total time for the surgery also showed no statistical differences ( P > 0.05). The main difference between the two groups was the guide-wire insertion time and the X-ray exposure time ( P < 0.05). Conclusions: Both electromagnetic navigation and robot-assisted are safe and efficient for percutaneous pedicle screw placement. Electromagnetic navigation system has obvious advantages over robot-assisted in terms of faster guide-wire placement and less X-ray exposure. Robot-assisted for percutaneous pedicle screw placement offers a preoperative planning system and a stable registration system, with obvious drawbacks of a strict training curve.


2022 ◽  
Vol 52 (1) ◽  
pp. E11

OBJECTIVE The application of robots in the field of pedicle screw placement has achieved great success. However, decompressive laminectomy, a step that is just as critical as pedicle screw placement, does not have a mature robot-assisted system. To address this lack, the authors designed a collaborative spine robot system to assist with laminectomy. In this study, they aimed to investigate the reliability of this novel collaborative spinal robot system and compare it with manual laminectomy (ML). METHODS Thirty in vitro porcine lumbar vertebral specimens were obtained as experimental bone specimens. Robot-assisted laminectomy (RAL) was performed on the left side of the lamina (n = 30) and ML was performed on the right side (n = 30). The time required for laminectomy on one side, whether the lamina was penetrated, and the remaining thickness of the lamina were compared between the two groups. RESULTS The time required for laminectomy on one side was longer in the RAL group than in the ML group (median 326 seconds [IQR 133 seconds] vs 108.5 seconds [IQR 43 seconds], p < 0.001). In the RAL group, complete lamina penetration occurred twice (6.7%), while in the ML group, it occurred 9 times (30%); the difference was statistically significant (p = 0.045). There was no statistically significant difference in the remaining lamina thickness between the two groups (median 1.035 mm [IQR 0.419 mm] vs 1.084 mm [IQR 0.383 mm], p = 0.842). CONCLUSIONS The results of this study confirm the safety of this novel spinal robot system for laminectomy. However, its efficiency requires further improvement.


Sign in / Sign up

Export Citation Format

Share Document