Treatment of cerebral vasospasm from subarachnoid hemorrhage with isoproterenol and lidocaine hydrochloride

1973 ◽  
Vol 38 (5) ◽  
pp. 557-560 ◽  
Author(s):  
Thoralf M. Sundt ◽  
Burton M. Onofrio ◽  
John Merideth

✓ Initial experience with intravenously administered isoproterenol and lidocaine hydrochloride in 14 patients with severe spasm from subarachnoid hemorrhage is summarized. All patients were actively deteriorating from progressive spasm without other major complications; 12 of 14 improved, and two died. The method of treatment, results, and rationale for this method of therapy are discussed.

2002 ◽  
Vol 97 (6) ◽  
pp. 1302-1305 ◽  
Author(s):  
Takao Kamezaki ◽  
Kiyoyuki Yanaka ◽  
Sohji Nagase ◽  
Keishi Fujita ◽  
Noriyuki Kato ◽  
...  

Object. Cerebral vasospasm remains a devastating medical complication of aneurysmal subarachnoid hemorrhage (SAH). Reactive oxygen species and subsequent lipid peroxidation are reported to participate in the causes of cerebral vasospasm. This clinical study was performed to investigate the relationships between levels of lipid peroxides in cerebrospinal fluid (CSF) and both delayed cerebral vasospasm and clinical outcome after SAH. Methods. Levels of phosphatidylcholine hydroperoxide (PCOOH) and cholesteryl ester hydroperoxide (CEOOH) in the CSF were measured in 20 patients with aneurysmal SAH. The patients' CSF was collected within 48 hours of hemorrhage onset and on Day 6 or 7 post-SAH. On Day 7, angiography was performed to verify the degree and extent of the vasospasm. The relationship between the patients' clinical profiles and the levels of lipid peroxides in the CSF were investigated. Both PCOOH and CEOOH were detectable in CSF, and their levels decreased within 7 days after onset of SAH. The levels of CEOOH within 48 hours after onset of hemorrhage were significantly higher in patients in whom symptomatic vasospasm later developed than in patients in whom symptomatic vasospasm did not develop (p = 0.002). Levels of PCOOH measured within 48 hours after onset of hemorrhage were significantly higher in patients with poor outcomes than in patients with good outcomes (p = 0.043). Conclusions. Increased levels of lipid peroxides measured in the CSF during the acute stage of SAH were predictive of both symptomatic vasospasm and poor outcome. Measurements of lipid peroxides in the CSF may be useful prognostically for patient outcomes as well as for predicting symptomatic vasospasm.


2003 ◽  
Vol 99 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Jacob Hansen-Schwartz ◽  
Natalie Løvland Hoel ◽  
Cang-Bao Xu ◽  
Niels-Aage Svendgaard ◽  
Lars Edvinsson

Object. Cerebral vasospasm following subarachnoid hemorrhage (SAH) leads to reduced blood flow in the brain. Inspired by organ culture—induced changes in the receptor phenotype of cerebral arteries, the authors investigated possible changes in the 5-hydroxytryptamine (HT) receptor phenotype after experimental SAH. Methods. Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive in vitro pharmacological method and molecularly by performing quantitative real-time reverse transcription—polymerase chain reaction (PCR). In the MCA and BA the 5-HT1B receptor was upregulated, as determined through both functional and molecular analysis. In response to selective 5-HT1 receptor agonists both the negative logarithm of the 50% effective concentration was increased (one log unit in the MCA and one half unit in the BA), as was the agonist's potency (increased by 50% in the MCA and doubled in the BA). In addition, the authors found an approximately fourfold increase in the number of copies of messenger RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. Conclusions. Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm.


2000 ◽  
Vol 92 (2) ◽  
pp. 284-290 ◽  
Author(s):  
Richard S. Polin ◽  
Volker A. Coenen ◽  
Carolyn Apperson Hansen ◽  
Peter Shin ◽  
Mustafa K. Baskaya ◽  
...  

Object. Transluminal angioplasty has become a widely used adjunct therapy to medical management of symptomatic cerebral vasospasm following subarachnoid hemorrhage (SAH). Despite anecdotal reports of universal, angiographically confirmed reversal of vasospasm and high rates of clinical improvement, no rigorous examination of the efficacy of this procedure has been conducted. In this study the authors assess the efficacy of the aforementioned procedure.Methods. Thirty-eight patients enrolled as part of the North American trial of tirilazad in aneurysmal SAH underwent transluminal angioplasty for symptomatic cerebral vasospasm. Fifty-three percent of these patients showed good recovery or moderate disability based on their 3-month Glasgow Outcome Scale score.Among the 38 patients who underwent angioplasty, the severity and type of vasospasm, use of papaverine in addition to balloon angioplasty, timing of treatment, and dose of study drug did not have an effect on the outcome. The results of their neurological examinations improved in only four of the 38 patients immediately after the procedure. A conditional logistic regression analysis was performed in which these patients were compared with individuals matched for age, sex, dose of study drug, admission neurological grade, and modified Glasgow Coma Scale score at the time of angioplasty. No effect on favorable outcomes was found for this procedure.Conclusions. Transluminal cerebral angioplasty is very effective in reversing angiographically confirmed vasospasm, and anecdotal reports of its clinical utility are numerous. However, in this report the authors conclude that its superiority to medical management for symptomatic cerebral vasospasm is questionable.


2003 ◽  
Vol 99 (2) ◽  
pp. 383-390 ◽  
Author(s):  
Gen Kusaka ◽  
Hitoshi Kimura ◽  
Ikuyo Kusaka ◽  
Eddie Perkins ◽  
Anil Nanda ◽  
...  

Object. Mitogen-activated protein kinase (MAPK) has been implicated in cerebral vasospasm after subarachnoid hemorrhage (SAH). This study was conducted to investigate whether Src tyrosine kinase, an upstream regulator of MAPK, is involved in cerebral vasospasm. Methods. An established canine double-hemorrhage model was used. Twenty-four dogs were divided into four groups: control, vehicle-treated, Src inhibitor PP2—treated, and Src inhibitor damnacanthal—treated groups. Vehicle (dimethyl sulfoxide), PP2, or damnacanthal was injected daily into the cisterna magna of 18 dogs at 3 to 6 days after induction of SAH. Angiography was performed on Day 0 (the day on which the first blood injection was administered to induce SAH) and on Day 7. Western blot analysis of Src and MAPK activation in basilar arteries (BAs) collected on Day 7 post-SAH was performed. Severe vasospasm was observed in the BAs of vehicle-treated dogs. Mild vasospasm was observed in all dogs treated with Src inhibitors. Phosphorylated Src and MAPK were increased after SAH and activation of these kinases in the BAs was abolished by PP2 and damnacanthal. Conclusions. The tyrosine kinase Src is an important upstream regulator of MAPK, and inhibition of Src might offer a new therapy in the management of cerebral vasospasm.


1992 ◽  
Vol 77 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Ryszard M. Pluta ◽  
Anna Deka-Starosta ◽  
Alois Zauner ◽  
Jay K. Morgan ◽  
Karin M. Muraszko ◽  
...  

✓ The cause of cerebral vasospasm after subarachnoid hemorrhage (SAH) remains unknown. Recently, an association between the potent vasoconstricting peptide, neuropeptide Y, and delayed cerebral vasospasm after SAH has been postulated. This was based on the findings of increased neuropeptide Y levels in the cerebrospinal fluid (CSF) and plasma after SAH in animals and humans. For this study, the primate model of SAH was used to assess the possible role of neuropeptide Y in delayed vasospasm after SAH. Fifteen cynomolgus monkeys underwent placement of a clot of either whole blood or red blood cells in the subarachnoid space around the middle cerebral artery (MCA). Sequential arteriography for assessment of MCA diameter and sampling of blood and CSF for neuropeptide Y were performed: before SAH (Day 0); 7 days after SAH, when signs of delayed cerebral vasospasm peak in this model and in humans; 12 days after SAH; and 28 days after SAH. Subarachnoid hemorrhage did not evoke changes in CSF or plasma levels of neuropeptide Y. Nine monkeys had arteriographic evidence of vasospasm on Day 7, but no change in neuropeptide Y levels occurred in plasma or CSF. In addition, neuropeptide Y levels did not change, even after resolution of vasospasm on Day 12 or Day 28. Neuropeptide Y levels were substantially higher in CSF than in arterial plasma (p < 0.003 at each interval). No correlation was found between neuropeptide Y levels in CSF and in plasma. These results do not confirm a relationship between neuropeptide Y levels in the CSF or peripheral plasma and delayed cerebral vasospasm in SAH.


1997 ◽  
Vol 87 (2) ◽  
pp. 275-280 ◽  
Author(s):  
Eelco F. M. Wijdicks ◽  
Wouter I. Schievink ◽  
John C. Burnett

✓ The natriuretic peptide system consists of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). The system is implicated in the control of body fluid homeostasis, causes natriuresis and diuresis (ANP and BNP), and regulates vascular tone (CNP). A reciprocal relationship between ANP and endothelin (ET) has been suggested, and earlier studies have documented a possible role of ET in cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). The authors studied plasma ANP, BNP, CNP, and ET for 6 consecutive days in 13 patients with SAH by using radioimmunoassay. The median admission values for ANP were 31.5 pg/ml (range 16.8–323 pg/ml [normal 15 ± 7 pg/ml]); for BNP, 45.3 pg/ml (range 2.2–80.2 pg/ml [normal 12 ± 9 pg/ml]); for CNP, 7.7 pg/ml (range < 2–20 pg/ml [normal 5.2 ± 3 pg/ml]); and for ET, 11 pg/ml (range 6.5–25.1 pg/ml [normal 7.2 ± 4 pg/ml]). Additional increases (defined as > 100% increase on two consecutive measurements) were noted in ANP (11 patients), BNP (10 patients), and CNP (three patients), and resulted in a negative fluid balance in 10 of the 13 patients. The CNP increased in three of four patients with cerebral vasospasm and in one of nine patients without cerebral vasospasm (Fisher's exact test, p = 0.2). No major fluctuations in plasma ET were noted. In seven patients, the plasma ET level did not increase beyond 10 pg/ml during the days of measurement. In six patients, only an occasional sample showed an increase to a maximum of 25 pg/ml. Changes in BNP, ANP, and CNP were independent of each other. The authors conclude that both plasma ANP and BNP increase after SAH and often result in a negative fluid balance. Plasma ANP and BNP seem differentially regulated in the presence of SAH but not by the level of the plasma ET. The possible role of CNP as a regulatory response to cerebral vasospasm needs further exploration.


2005 ◽  
Vol 103 (6) ◽  
pp. 974-981 ◽  
Author(s):  
Andreas Raabe ◽  
Jügen Beck ◽  
Mike Keller ◽  
Hartmuth Vatter ◽  
Michael Zimmermann ◽  
...  

Object. Hypervolemia and hypertension therapy is routinely used for prophylaxis and treatment of symptomatic cerebral vasospasm at many institutions. Nevertheless, there is an ongoing debate about the preferred modality (hypervolemia, hypertension, or both), the degree of therapy (moderate or aggressive), and the risk or benefit of hypervolemia, moderate hypertension, and aggressive hypertension in patients following subarachnoid hemorrhage. Methods. Monitoring data and patient charts for 45 patients were retrospectively searched to identify periods of hypervolemia, moderate hypertension, or aggressive hypertension. Measurements of central venous pressure, fluid input, urine output, arterial blood pressure, intracranial pressure, and oxygen partial pressure (PO2) in the brain tissue were extracted from periods ranging from 1 hour to 24 hours. For these periods, the change in brain tissue PO2 and the incidence of complications were analyzed. During the 55 periods of moderate hypertension, an increase in brain tissue PO2 was found in 50 cases (90%), with complications occurring in three patients (8%). During the 25 periods of hypervolemia, an increase in brain oxygenation was found during three intervals (12%), with complications occurring in nine patients (53%). During the 10 periods of aggressive hypervolemic hypertension, an increase in brain oxygenation was found during six of the intervals (60%), with complications in five patients (50%). Conclusions. When hypervolemia treatment is applied as in this study, it may be associated with increased risks. Note, however, that further studies are needed to determine the role of this therapeutic modality in the care of patients with cerebral vasospasm. In poor-grade patients, moderate hypertension (cerebral perfusion pressure 80–120 mm Hg) in a normovolemic, hemodiluted patient is an effective method of improving cerebral oxygenation and is associated with a lower complication rate compared with hypervolemia or aggressive hypertension therapy.


1997 ◽  
Vol 87 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Ryszard M. Pluta ◽  
Robert J. Boock ◽  
John K. Afshar ◽  
Kathleen Clouse ◽  
Mima Bacic ◽  
...  

✓ Despite years of research, delayed cerebral vasospasm remains a serious complication of subarachnoid hemorrhage (SAH). Recently, it has been proposed that endothelin-1 (ET-1) mediates vasospasm. The authors examined this hypothesis in a series of experiments. In a primate model of SAH, serial ET-1 levels were measured in samples from the perivascular space by using a microdialysis technique and in cerebrospinal fluid (CSF) and plasma during the development and resolution of delayed vasospasm. To determine whether elevated ET-1 production was a direct cause of vasospasm or acted secondary to ischemia, the authors also measured ET-1 levels in plasma and CSF after transient cerebral ischemia. To elucidate the source of ET-1, they measured its production in cultures of endothelial cells and astrocytes exposed to oxyhemoglobin (10 µM), methemoglobin (10 µM), or hypoxia (11% oxygen). There was no correlation between the perivascular levels of ET-1 and the development of vasospasm or its resolution. Cerebrospinal fluid and plasma levels of ET-1 were not affected by vasospasm (CSF ET-1 levels were 9.3 ± 2.2 pg/ml and ET-1 plasma levels were 1.2 ± 0.6 pg/ml) before SAH and remained unchanged when vasospasm developed (7.1 ± 1.7 pg/ml in CSF and 2.7 ± 1.5 pg/ml in plasma). Transient cerebral ischemia evoked an increase of ET-1 levels in CSF (1 ± 0.4 pg/ml at the occlusion vs. 3.1 ± 0.6 pg/ml 4 hours after reperfusion; p < 0.05), which returned to normal (0.7 ± 0.3 pg/ml) after 24 hours. Endothelial cells and astrocytes in culture showed inhibition of ET-1 production 6 hours after exposure to hemoglobins. Hypoxia inhibited ET-1 release by endothelial cells at 24 hours (6.4 ± 0.8 pg/ml vs. 0.1 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05) and at 48 hours (6.4 ± 0.6 pg/ml vs. 0 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05), but in astrocytes hypoxia induced an increase of ET-1 at 6 hours (1.5 ± 0.6 vs. 6.4 ± 1.1 pg/ml, control vs. hypoxic astrocytes; p < 0.05). Endothelin-1 is released from astrocytes, but not endothelial cells, during hypoxia and is released from the brain after transient ischemia. There is no relationship between ET-1 and vasospasm in vivo or between ET-1 and oxyhemoglobin, a putative agent of vasospasm, in vitro. The increase in ET-1 levels in CSF after SAH from a ruptured intracranial aneurysm appears to be the result of cerebral ischemia rather than reflecting the cause of cerebral vasospasm.


2003 ◽  
Vol 99 (2) ◽  
pp. 376-382 ◽  
Author(s):  
Richard E. Clatterbuck ◽  
Philippe Gailloud ◽  
Lynn Ogata ◽  
Abeyu Gebremariam ◽  
Gregory N. Dietsch ◽  
...  

Object. Leukocyte—endothelial cell interactions occurring in the first hours after subarachnoid hemorrhage (SAH) initiate changes in the endothelium and vessel wall that lead to an influx of leukocytes and the development of chronic vasospasm days later. Upregulation of intercellular adhesion molecule—1 (ICAM-1), also called CD54, appears to be a crucial step in this process. There is increasing experimental evidence that blocking the interaction between ICAM-1, which is expressed on endothelium, and integrins such as lymphocyte function—associated antigen—1 (CD11a/CD18) and macrophage antigen—1 (complement receptor 3, CD11b/CD18), which are expressed on the surface of leukocytes, prevents not only inflammation of vessel walls but also chronic vasospasm. The authors extend their previous work with monoclonal antibody (mAb) blockade of leukocyte migration to a nonhuman primate model of chronic, posthemorrhagic cerebral vasospasm. Methods. Before surgery was performed, six young adult male cynomolgus monkeys underwent baseline selective biplane common carotid and vertebrobasilar artery cerebral angiography via a transfemoral route. On Day 0, a right frontosphenotemporal craniectomy was performed with arachnoid microdissection and placement of 2 to 3 ml of clotted autologous blood in the ipsilateral basal cisterns. The animals were given daily intravenous infusions of 2 mg/kg of either a humanized anti-CD11/CD18 or a placebo mAb beginning 30 to 60 minutes postoperatively. The monkeys were killed on Day 7 after a repeated selective cerebral angiogram was obtained. The area of contrast-containing vessels observed in each hemisphere on anteroposterior angiographic views was calculated for the angiograms obtained on Day 7 and expressed as a percentage of the area on baseline angiograms (percent control areal fraction). Review of flow cytometry and enzyme immunoassay data confirmed the presence of the anti-CD11/CD18 antibody in the serum and bound to leukocytes in the peripheral blood of treated animals. Comparisons of the groups revealed 53 ± 4.8% control vascular areal fraction in the placebo group (two animals) and 95.8 ± 9.4% in the anti-CD11/CD18—treated group (three animals), a statistically significant difference (p = 0.043, t-test). Conclusions. These results show that blockade of leukocyte migration into the subarachnoid space by an anti-CD11/CD18 mAb is effective in preventing experimental cerebral vasospasm in nonhuman primates, despite the unaltered presence of hemoglobin in the subarachnoid space. These experimental data support the hypothesis that inflammation plays a role in cerebral vasospasm after SAH.


1995 ◽  
Vol 83 (1) ◽  
pp. 118-122 ◽  
Author(s):  
John K. B. Afshar ◽  
Ryszard M. Pluta ◽  
Robert J. Boock ◽  
B. Gregory Thompson ◽  
Edward H. Oldfield

✓ The continuous release of nitric oxide (NO) is required to maintain basal cerebrovascular tone. Oxyhemoglobin, a putative spasmogen, rapidly binds NO, implicating loss of NO in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). If vasospasm is mediated by depletion of NO in the vessel wall, it should be reversible by replacement with NO. To investigate this hypothesis, the authors placed blood clots around the right middle cerebral artery (RMCA) of four cynomolgus monkeys; four unoperated animals served as controls. Arteriography was performed before and 7 days after surgery to assess the presence and degree of vasospasm, which was quantified in the anteroposterior (AP) projection by computerized image analysis. On Day 7, cortical cerebral blood flow (CBF) in the distribution of the right MCA was measured during four to six runs in the right internal carotid artery (ICA) of brief infusions of saline followed by NO solution. Arteriography was performed immediately after completing the final NO infusion in three of the four animals with vasospasm. Right MCA blood flow velocities were obtained using transcranial Doppler before, during, and after NO infusion in two vasospastic animals. After ICA NO infusion, arteriographic vasospasm resolved (mean percent of preoperative AP area, 55.9%); that is, the AP areas of the proximal portion of the right MCA returned to their preoperative values (mean 91.4%; range 88%–96%). Compared to ICA saline, during ICA NO infusion CBF increased 7% in control animals and 19% in vasospastic animals (p < 0.002) without significant changes in other physiological parameters. During NO infusion, peak systolic right MCA CBF velocity decreased (130 to 109 cm/sec and 116 to 76 cm/sec) in two vasospastic animals. The effects of ICA NO on CBF and CBF velocity disappeared shortly after terminating NO infusion. Intracarotid infusion of NO in a primate model of vasospasm 1) increases CBF, 2) decreases cerebral vascular resistance, 3) reverses arteriographic vasospasm, and 4) decreases CBF velocity in the vasospastic artery without producing systemic hypotension. These findings indicate the potential for the development of targeted therapy to reverse cerebral vasospasm after SAH.


Sign in / Sign up

Export Citation Format

Share Document