Subarachnoid hemorrhage—induced upregulation of the 5-HT1B receptor in cerebral arteries in rats

2003 ◽  
Vol 99 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Jacob Hansen-Schwartz ◽  
Natalie Løvland Hoel ◽  
Cang-Bao Xu ◽  
Niels-Aage Svendgaard ◽  
Lars Edvinsson

Object. Cerebral vasospasm following subarachnoid hemorrhage (SAH) leads to reduced blood flow in the brain. Inspired by organ culture—induced changes in the receptor phenotype of cerebral arteries, the authors investigated possible changes in the 5-hydroxytryptamine (HT) receptor phenotype after experimental SAH. Methods. Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive in vitro pharmacological method and molecularly by performing quantitative real-time reverse transcription—polymerase chain reaction (PCR). In the MCA and BA the 5-HT1B receptor was upregulated, as determined through both functional and molecular analysis. In response to selective 5-HT1 receptor agonists both the negative logarithm of the 50% effective concentration was increased (one log unit in the MCA and one half unit in the BA), as was the agonist's potency (increased by 50% in the MCA and doubled in the BA). In addition, the authors found an approximately fourfold increase in the number of copies of messenger RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. Conclusions. Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm.

2005 ◽  
Vol 103 (6) ◽  
pp. 974-981 ◽  
Author(s):  
Andreas Raabe ◽  
Jügen Beck ◽  
Mike Keller ◽  
Hartmuth Vatter ◽  
Michael Zimmermann ◽  
...  

Object. Hypervolemia and hypertension therapy is routinely used for prophylaxis and treatment of symptomatic cerebral vasospasm at many institutions. Nevertheless, there is an ongoing debate about the preferred modality (hypervolemia, hypertension, or both), the degree of therapy (moderate or aggressive), and the risk or benefit of hypervolemia, moderate hypertension, and aggressive hypertension in patients following subarachnoid hemorrhage. Methods. Monitoring data and patient charts for 45 patients were retrospectively searched to identify periods of hypervolemia, moderate hypertension, or aggressive hypertension. Measurements of central venous pressure, fluid input, urine output, arterial blood pressure, intracranial pressure, and oxygen partial pressure (PO2) in the brain tissue were extracted from periods ranging from 1 hour to 24 hours. For these periods, the change in brain tissue PO2 and the incidence of complications were analyzed. During the 55 periods of moderate hypertension, an increase in brain tissue PO2 was found in 50 cases (90%), with complications occurring in three patients (8%). During the 25 periods of hypervolemia, an increase in brain oxygenation was found during three intervals (12%), with complications occurring in nine patients (53%). During the 10 periods of aggressive hypervolemic hypertension, an increase in brain oxygenation was found during six of the intervals (60%), with complications in five patients (50%). Conclusions. When hypervolemia treatment is applied as in this study, it may be associated with increased risks. Note, however, that further studies are needed to determine the role of this therapeutic modality in the care of patients with cerebral vasospasm. In poor-grade patients, moderate hypertension (cerebral perfusion pressure 80–120 mm Hg) in a normovolemic, hemodiluted patient is an effective method of improving cerebral oxygenation and is associated with a lower complication rate compared with hypervolemia or aggressive hypertension therapy.


1978 ◽  
Vol 49 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Donald P. Boisvert ◽  
Thomas R. Overton ◽  
Bryce Weir ◽  
Michael G. Grace

✓ Regional cerebral blood flow (rCBF), angiographic cerebral arterial caliber, and cerebrospinal fluid (CSF) pressure were measured in rhesus monkeys to determine the effect of experimentally induced subarachnoid hemorrhage (SAH) on cerebral arterial responses to graded increases in blood pressure. These measurements were also performed in a control group of monkeys subjected to a mock SAH by injection of artificial CSF into the cerebral space. Before subarachnoid injection of blood or artificial CSF, graded increases in mean arterial blood pressure (MABP) to a level 40% to 50% above baseline values had no effect on rCBF. The major cerebral arteries constricted and CSF pressure remained unchanged. Similar responses were observed after injection of artificial CSF. When MABP was increased in animals that had been subjected to subarachnoid injection of blood, rCBF increased and was associated with dilatation of the major cerebral arteries and moderate increases in CSF pressure. These results demonstrate that cerebral arterial responses to increases in blood pressure may be abnormal in the presence of subarachnoid blood. The manner in which abnormal cerebral arterial reactivity, changes in blood pressure, and vasospasm combine to determine the level of cerebral perfusion following SAH is postulated.


1998 ◽  
Vol 88 (3) ◽  
pp. 557-561 ◽  
Author(s):  
Ryszard M. Pluta ◽  
John K. B. Afshar ◽  
Robert J. Boock ◽  
Edward H. Oldfield

Hemoglobin released from hemolysed erythrocytes has been postulated to be responsible for delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). However, the evidence is indirect and the mechanisms of action are unclear. Cerebrovascular tone is regulated by a dynamic balance of relaxing and contracting factors. Loss of the endothelium-derived relaxing factor—nitric oxide in the presence of oxyhemoglobin and overproduction of endothelin-1 stimulated by oxyhemoglobin have been postulated as causes of delayed cerebral vasospasm after SAH. Object. The authors aimed to investigate this hypothesis using in vivo microdialysis to examine time-dependent changes in the perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin in a primate model of SAH. Methods. Nine cynomolgus monkeys underwent right-sided frontotemporal craniectomy and placement of a semipermeable microdialysis catheter adjacent to the right middle cerebral artery (MCA). Saline (control group, three animals) or an arterial blood clot (SAH group, six animals) was then placed around the MCA and the catheter. Arteriographically confirmed vasospasm had developed in all animals with SAH but in none of the control animals on Day 7. The dialysate was collected daily for 12 days. Levels of oxyhemoglobin, deoxyhemoglobin, and methemoglobin were measured by means of spectrophotometry. Perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin peaked on Day 2 in the control monkeys and could not be detected on Days 5 to 12. Perivascular concentrations of oxyhemoglobin and deoxyhemoglobin peaked on Day 7 in the SAH group, at which time the concentrations in the dialysate were 100-fold higher than in any sample obtained from the control animals. Methemoglobin levels increased only slightly, peaking between Days 7 and 12, at which time the concentration in the dialysate was 10-fold higher than in samples from the control animals. Conclusions. This study provides in vivo evidence that the concentrations of oxyhemoglobin and deoxyhemoglobin increase in the cerebral subarachnoid perivascular space during the development of delayed cerebral vasospasm. The results support the hypothesis that oxyhemoglobin is involved in the pathogenesis of delayed cerebral vasospasm after SAH and implicate deoxyhemoglobin as a possible vasospastic agent.


1987 ◽  
Vol 66 (6) ◽  
pp. 915-923 ◽  
Author(s):  
Tadayoshi Nakagomi ◽  
Neal F. Kassell ◽  
Tomio Sasaki ◽  
Shigeru Fujiwara ◽  
R. Michael Lehman ◽  
...  

✓ The effect of subarachnoid hemorrhage (SAH) on endothelium-dependent vasodilation of the isolated rabbit basilar artery was examined using an isometric tension recording method. The SAH was induced by injecting 5 ml of fresh arterial blood into the cisterna magna. Sixty-two rabbits were separated into four groups according to the timing of sacrifice: control rabbits, and operated rabbits sacrificed on Days 2, 4, and 6 after SAH. Acetylcholine (ACh) (10−7 M to 10−4 M) and adenosine triphosphate (ATP) (10−7 M to 10−4 M) were used to evoke dose-dependent vasodilation of isolated arterial rings previously contracted by 10−6 M serotonin (5-HT). There were no significant differences in the vasodilatory response to ACh among these four groups. Relaxation to approximately 84% of the initial contractile tone occurred with 10−4 M ACh. On the other hand, the vasodilatory response to ATP was suppressed in the animals sacrificed 2 days after SAH; the relaxation of this group was approximately 52% at 10−4 M ATP, compared to a relaxation of 87% observed in the other groups of animals. One of the major causes of the impairment of endothelium-dependent vasodilation seems to be an inhibition of the production of endothelium-derived relaxing factor by endothelial cells. After the relaxation studies, the dose-response curves for 5-HT were obtained. Serotonin caused significantly more contraction in the animals sacrificed 2 days after SAH than in the other groups. The present experiments suggest that impairment of the endothelium-dependent vasodilation following SAH, together with the potentiation of the contractile response to vasoactive agents in cerebral arteries, may play an important role in the pathogenesis of vasospasm.


2002 ◽  
Vol 97 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Motoyoshi Satoh ◽  
Eddie Perkins ◽  
Hitoshi Kimura ◽  
Jiping Tang ◽  
Yi Chun ◽  
...  

Object. Gene transfer to cerebral vessels is a promising new therapeutic approach for cerebral vasospasm after subarachnoid hemorrhage (SAH). This study was undertaken to explore whether a delayed treatment with adenovirus encoding the prepro-calcitonin gene—related peptide (CGRP), 2 days after initial blood injection, reduces cerebral vasospasm in a double-hemorrhage model of severe vasospasm in dogs. Methods. In 20 dogs, arterial blood was injected into the cisterna magna on Days 0 and 2. Thirty minutes after the second blood injection, the animals received either adenovirus encoding the prepro-CGRP gene (AdCMVCGRP—treated group, eight dogs) or adenovirus encoding the β-galactosidase gene (AdCMVβgal—treated group, six dogs) under the cytomegalovirus (CMV) promoter. One group of dogs did not receive treatment and served as controls (control SAH group, six dogs). Angiography was performed on Days 0 and 7 to assess cerebral vasospasm. On Day 7 following angiography, the animals were killed and their brains were stained with X-gal to detect the distribution of gene expression. Cerebrospinal fluid (CSF) was also tested for CGRP immunoreactivity. Severe vasospasm was observed in control SAH dogs on Day 7, and the mean basilar artery (BA) diameter was 53.4 ± 5.5% of the value measured on Day 0. Treatment with AdCMVβgal did not alter vasospasm (the BA diameter was 55 ± 3.9% of that measured on Day 0). The leptomeninges and adventitia of the BAs of dogs treated using AdCMVβgal demonstrated positive staining with X-gal. High levels of CGRP were measured in CSF from dogs that received AdCMVCGRP. In the group treated with AdCMVCGRP, vasospasm was significantly reduced (the BA diameter was 78.2 ± 5.3% of that measured on Day 0, p < 0.05 compared with the control SAH group and the AdCMVβgal group). Conclusions. In a model of severe vasospasm in dogs, gene transfer of CGRP after injection of blood attenuated cerebral vasospasm after SAH.


2002 ◽  
Vol 97 (6) ◽  
pp. 1302-1305 ◽  
Author(s):  
Takao Kamezaki ◽  
Kiyoyuki Yanaka ◽  
Sohji Nagase ◽  
Keishi Fujita ◽  
Noriyuki Kato ◽  
...  

Object. Cerebral vasospasm remains a devastating medical complication of aneurysmal subarachnoid hemorrhage (SAH). Reactive oxygen species and subsequent lipid peroxidation are reported to participate in the causes of cerebral vasospasm. This clinical study was performed to investigate the relationships between levels of lipid peroxides in cerebrospinal fluid (CSF) and both delayed cerebral vasospasm and clinical outcome after SAH. Methods. Levels of phosphatidylcholine hydroperoxide (PCOOH) and cholesteryl ester hydroperoxide (CEOOH) in the CSF were measured in 20 patients with aneurysmal SAH. The patients' CSF was collected within 48 hours of hemorrhage onset and on Day 6 or 7 post-SAH. On Day 7, angiography was performed to verify the degree and extent of the vasospasm. The relationship between the patients' clinical profiles and the levels of lipid peroxides in the CSF were investigated. Both PCOOH and CEOOH were detectable in CSF, and their levels decreased within 7 days after onset of SAH. The levels of CEOOH within 48 hours after onset of hemorrhage were significantly higher in patients in whom symptomatic vasospasm later developed than in patients in whom symptomatic vasospasm did not develop (p = 0.002). Levels of PCOOH measured within 48 hours after onset of hemorrhage were significantly higher in patients with poor outcomes than in patients with good outcomes (p = 0.043). Conclusions. Increased levels of lipid peroxides measured in the CSF during the acute stage of SAH were predictive of both symptomatic vasospasm and poor outcome. Measurements of lipid peroxides in the CSF may be useful prognostically for patient outcomes as well as for predicting symptomatic vasospasm.


1994 ◽  
Vol 80 (5) ◽  
pp. 857-864 ◽  
Author(s):  
Joseph M. Darby ◽  
Howard Yonas ◽  
Elizabeth C. Marks ◽  
Susan Durham ◽  
Robert W. Snyder ◽  
...  

✓ The effects of dopamine-induced hypertension on local cerebral blood flow (CBF) were investigated in 13 patients suspected of suffering clinical vasospasm after aneurysmal subarachnoid hemorrhage (SAH). The CBF was measured in multiple vascular territories using xenon-enhanced computerized tomography (CT) with and without dopamine-induced hypertension. A territorial local CBF of 25 ml/100 gm/min or less was used to define ischemia and was identified in nine of the 13 patients. Raising mean arterial blood pressure from 90 ± 11 mm Hg to 111 ± 13 mm Hg (p < 0.05) via dopamine administration increased territorial local CBF above the ischemic range in more than 90% of the uninfarcted territories identified on CT while decreasing local CBF in one-third of the nonischemic territories. Overall, the change in local CBF after dopamine-induced hypertension was correlated with resting local CBF at normotension and was unrelated to the change in blood pressure. Of the 13 patients initially suspected of suffering clinical vasospasm, only 54% had identifiable reversible ischemia. The authors conclude that dopamine-induced hypertension is associated with an increase in flow in patients with ischemia after SAH. However, flow changes associated with dopamine-induced hypertension may not be entirely dependent on changes in systemic blood pressure. The direct cerebrovascular effects of dopamine may have important, yet unpredictable, effects on CBF under clinical pathological conditions. Because there is a potential risk of dopamine-induced ischemia, treatment may be best guided by local CBF measurements.


1987 ◽  
Vol 66 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Yoshihiko Uemura ◽  
Tetsuo Sugimoto ◽  
Shinichiro Okamoto ◽  
Hajime Handa ◽  
Noboru Mizuno

✓ The immunoreactivity of vasoactive intestinal polypeptide (VIP)-, substance P (SP)-, and neuropeptide Y (NPY)-containing nerve fibers in the basilar artery (BA) and proximal portion of the middle cerebral artery (M1) was immunohistochemically examined in the dog after experimentally produced subarachnoid hemorrhage (SAH). The SAH was produced by a single injection of fresh autologous arterial blood (1 ml/kg body weight) into the cisterna magna. The density (the averaged number of nerve fibers in a unit area) of VIP-, SP-, and NPY-immunoreactive perivascular nerve fibers in the M1 segment and the BA was markedly decreased (5% to 40% of the normal value) immediately after the injection. The density of VIP- and SP-immunoreactive perivascular fibers increased 2 or 3 weeks after SAH and became normal by the 63rd day after injection. On the other hand, no substantial recovery was observed in the density of NPY-immunoreactive perivascular fibers by 63 days after injection.


1973 ◽  
Vol 38 (5) ◽  
pp. 557-560 ◽  
Author(s):  
Thoralf M. Sundt ◽  
Burton M. Onofrio ◽  
John Merideth

✓ Initial experience with intravenously administered isoproterenol and lidocaine hydrochloride in 14 patients with severe spasm from subarachnoid hemorrhage is summarized. All patients were actively deteriorating from progressive spasm without other major complications; 12 of 14 improved, and two died. The method of treatment, results, and rationale for this method of therapy are discussed.


2000 ◽  
Vol 92 (2) ◽  
pp. 284-290 ◽  
Author(s):  
Richard S. Polin ◽  
Volker A. Coenen ◽  
Carolyn Apperson Hansen ◽  
Peter Shin ◽  
Mustafa K. Baskaya ◽  
...  

Object. Transluminal angioplasty has become a widely used adjunct therapy to medical management of symptomatic cerebral vasospasm following subarachnoid hemorrhage (SAH). Despite anecdotal reports of universal, angiographically confirmed reversal of vasospasm and high rates of clinical improvement, no rigorous examination of the efficacy of this procedure has been conducted. In this study the authors assess the efficacy of the aforementioned procedure.Methods. Thirty-eight patients enrolled as part of the North American trial of tirilazad in aneurysmal SAH underwent transluminal angioplasty for symptomatic cerebral vasospasm. Fifty-three percent of these patients showed good recovery or moderate disability based on their 3-month Glasgow Outcome Scale score.Among the 38 patients who underwent angioplasty, the severity and type of vasospasm, use of papaverine in addition to balloon angioplasty, timing of treatment, and dose of study drug did not have an effect on the outcome. The results of their neurological examinations improved in only four of the 38 patients immediately after the procedure. A conditional logistic regression analysis was performed in which these patients were compared with individuals matched for age, sex, dose of study drug, admission neurological grade, and modified Glasgow Coma Scale score at the time of angioplasty. No effect on favorable outcomes was found for this procedure.Conclusions. Transluminal cerebral angioplasty is very effective in reversing angiographically confirmed vasospasm, and anecdotal reports of its clinical utility are numerous. However, in this report the authors conclude that its superiority to medical management for symptomatic cerebral vasospasm is questionable.


Sign in / Sign up

Export Citation Format

Share Document