Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up

1998 ◽  
Vol 89 (5) ◽  
pp. 699-706 ◽  
Author(s):  
Michael B. Bracken ◽  
Mary Jo Shepard ◽  
Theodore R. Holford ◽  
Linda Leo-Summers ◽  
E. Francois Aldrich ◽  
...  

Object. A randomized double-blind clinical trial was conducted to compare neurological and functional recovery and morbidity and mortality rates 1 year after acute spinal cord injury in patients who had received a standard 24-hour methylprednisolone regimen (24MP) with those in whom an identical MP regimen had been delivered for 48 hours (48MP) or those who had received a 48-hour tirilazad mesylate (48TM) regimen. Methods. Patients for whom treatment was initiated within 3 hours of injury showed equal neurological and functional recovery in all three treatment groups. Patients for whom treatment was delayed more than 3 hours experienced diminished motor function recovery in the 24MP group, but those in the 48MP group showed greater 1-year motor recovery (recovery scores of 13.7 and 19, respectively, p = 0.053). A greater percentage of patients improving three or more neurological grades was also observed in the 48MP group (p = 0.073). In general, patients treated with 48TM recovered equally when compared with those who received 24MP treatments. A corresponding recovery in self care and sphincter control was seen but was not statistically significant. Mortality and morbidity rates at 1 year were similar in all groups. Conclusions. For patients in whom MP therapy is initiated within 3 hours of injury, 24-hour maintenance is appropriate. Patients starting therapy 3 to 8 hours after injury should be maintained on the regimen for 48 hours unless there are complicating medical factors.

1998 ◽  
Vol 5 (3) ◽  
pp. E1 ◽  
Author(s):  
Michael B. Bracken ◽  
Mary Jo Shepard ◽  
Theodore R. Holford ◽  
Linda Leo-Summers ◽  
E. Francois Aldrich ◽  
...  

Object A randomized double-blind clinical trial was conducted to compare neurological and functional recovery and morbidity and mortality rates 1 year after acute spinal cord injury in patients who had received a standard 24-hour methylprednisolone regimen (24MP) with those in whom an identical MP regimen had been delivered for 48 hours (48MP) or those who had received a 48-hour tirilazad mesylate (48TM) regimen. Methods Patients for whom treatment was initiated within 3 hours of injury showed equal neurological and functional recovery in all three treatment groups. Patients for whom treatment was delayed more than 3 hours experienced diminished motor function recovery in the 24MP group, but those in the 48MP group showed greater 1-year motor recovery (recovery scores of 13.7 and 19, respectively, p = 0.053).A greater percentage of patients improving three or more neurological grades was also observed in the 48MP group (p = 0.073). In general, patients treated with 48TM recovered equally when compared with those who received 24MP treatments. A corresponding recovery in self care and sphincter control was seen but was not statistically significant. Mortality and morbidity rates at 1 year were similar in all groups. Conclusions For patients in whom MP therapy is initiated within 3 hours of injury, 24-hour maintenance is appropriate. Patients starting therapy 3 to 8 hours after injury should be maintained on the regimen for 48 hours unless there are complicating medical factors.


1984 ◽  
Vol 60 (6) ◽  
pp. 1269-1274 ◽  
Author(s):  
Ronald W. J. Ford ◽  
David N. Malm

✓ Beginning 30 minutes after acute spinal cord injury, cats were treated by the administration of continuous spinal anesthesia for 8 hours. This was achieved by the intermittent injection of hyperbaric tetracaine into the subarachnoid space at the site of injury via an indwelling catheter. There were no significant differences in functional recovery or histologically assessed tissue preservation between treated cats and concurrently managed control animals. The indwelling subarachnoid catheter used for drug administration was found to have no significant effect on the spinal cord injury.


2002 ◽  
Vol 96 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Michael B. Bracken ◽  
Theodore R. Holford

Object. In the second National Acute Spinal Cord Injury Study (NASCIS II) investigators evaluated several standard neurological parameters but not functional activity. This has led to questions concerning the clinical importance of the increase in neurological recovery observed following administration of methylprednisolone (MP) within 8 hours of acute spinal cord injury (SCI). The safety of the therapy has also been questioned. Methods. Both neurological and functional recovery were assessed in NASCIS III, a trial that followed an almost identical protocol to NASCIS II. In the current analysis locally weighted scatterplot smoothing (LOESS) nonparametric regression is used to model the extent of recovery in the Functional Independence Measure (FIM) that is predicted by improvement in the NASCIS/American Spinal Cord Injury Association motor scores that were documented in NASCIS III 1 year after SCI, and the models are applied to the extent of motor recovery demonstrated in NASCIS II. The models predict improvement in FIM that would be expected from the motor function recovery observed in NASCIS II. Estimates are provided overall and for patients with complete and incomplete neurological loss at time of injury. The authors review recent evidence obtained from randomized studies documenting adverse effects that may result from high-dose MP therapy. The relationship between motor function and FIM is strongly nonlinear and dependent on initial level of injury and degree of injury severity. In the best statistical model, the expanded motor score could be used to explain 77.2% of the variability in the FIM. Based on the mean MP-related 3.6-unit improvement in the motor score for patients with complete injuries and 7.3 for those with incomplete injuries owed to MP in NASCIS II, 18.6% of patients would improve six or more FIM points and 9% nine or more points, respectively. In those with complete neurological injury, the mean motor improvement of 3.6 predicted that 63.9% of the patients would improve three or more FIM points and 12.1% six or more points to a maximum of eight points. Of those with incomplete neurological injury, a 7.3 mean improvement in motor function predicted that 27.4% would gain six or more FIM points and that 21% would gain nine or more points to a maximum of 15 points. Analysis of the current best evidence from SCI and other randomized surgical trials in which high-dose MP has been administered provides no grounds for concern about commonly studied adverse effects. Conclusions. The extent of MP therapy—related motor function recovery observed in NASCIS II predicted clinically important recovery in the FIM. Reasons to be cautious with regard to this prediction include the lack of robustness in statistical modeling, some loss of validity in the FIM, and considerable heterogeneity in the SCI population. Whatever functional activity is ascribed to high-dose MP therapy, it is does not appear to be associated with risk of adverse outcomes.


2000 ◽  
Vol 93 (1) ◽  
pp. 1-7 ◽  
Author(s):  
R. John Hurlbert

Object. Since publication in 1990, results from the National Acute Spinal Cord Injury Study II (NASCIS II) trial have changed the way patients suffering an acute spinal cord injury (SCI) are treated. More recently, recommendations from NASCIS III are being adopted by institutions around the world. The purpose of this paper is to reevaluate carefully the results and conclusions of these studies to determine the role they should play in influencing decisions about care of the acutely spinal cord—injured patient. Methods. Published results from NASCIS II and III were reviewed in the context of the original study design, including primary outcomes compared with post-hoc comparisons. Data were retroconverted from tabular form back to raw form to allow direct inspection of changes in treatment groups. These findings were further analyzed with respect to justification of practice standards. Although well-designed and well-executed, both NASCIS II and III failed to demonstrate improvement in primary outcome measures as a result of the administration of methylprednisolone. Post-hoc comparisons, although interesting, did not provide compelling data to establish a new standard of care in the treatment of patients with acute SCI. Conclusions. The use of methylprednisolone administration in the treatment of acute SCI is not proven as a standard of care, nor can it be considered a recommended treatment. Evidence of the drug's efficacy and impact is weak and may only represent random events. In the strictest sense, 24-hour administration of methylprednisolone must still be considered experimental for use in clinical SCI. Forty-eight-hour therapy is not recommended. These conclusions are important to consider in the design of future trials and in the medicolegal arena.


1994 ◽  
Vol 80 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Shlomo Constantini ◽  
Wise Young

✓ Recent clinical trials have reported that methylprednisolone sodium succinate (MP) or the monosialic ganglioside GM1 improves neurological recovery in human spinal cord injury. Because GM1 may have additive or synergistic effects when used with MP, the authors compared MP, GM1, and MP+GM1 treatments in a graded rat spinal cord contusion model. Spinal cord injury was caused by dropping a rod weighing 10 gm from a height of 1.25, 2.5, or 5.0 cm onto the rat spinal cord at T-10, which had been exposed via laminectomy. The lesion volumes were quantified from spinal cord Na and K shifts at 24 hours after injury and the results were verified histologically in separate experiments. A single dose of MP (30 mg/kg), given 5 minutes after injury, reduced 24-hour spinal cord lesion volumes by 56% (p = 0.0052), 28% (p = 0.0065), and 13% (p > 0.05) in the three injury-severity groups, respectively, compared to similarly injured control groups treated with vehicle only. Methylprednisolone also prevented injury-induced hyponatremia and increased body weight loss in the spine-injured rats. When used alone, GM1 (10 to 30 mg/kg) had little or no effect on any measured variable compared to vehicle controls; when given concomitantly with MP, GM1 blocked the neuroprotective effects of MP. At a dose of 3 mg/kg, GM1 partially prevented MP-induced reductions in lesion volumes, while 10 to 30 mg/kg of GM1 completely blocked these effects of MP. The effects of MP on injury-induced hyponatremia and body weight loss were also blocked by GM1. Thus, GM1 antagonized both central and peripheral effects of MP in spine-injured rats. Until this interaction is clarified, the authors recommend that MP and GM1 not be used concomitantly to treat acute human spinal cord injury. Because GM1 modulates protein kinase activity, protein kinases inhibit lipocortins, and lipocortins mediate anti-inflammatory effects of glucocorticoids, it is proposed that the neuroprotective effects of MP are partially due to anti-inflammatory effects and that GM1 antagonizes the effects of MP by inhibiting lipocortin. Possible beneficial effects of GM1 reported in central nervous system injury may be related to the effects on neural recovery rather than acute injury processes.


1984 ◽  
Vol 61 (5) ◽  
pp. 925-930 ◽  
Author(s):  
Ronald W. J. Ford ◽  
David N. Malm

✓ Hypocarbia, normocarbia, or hypercarbia was maintained for an 8-hour period beginning 30 minutes after acute threshold spinal cord injuries in cats. No statistically significant differences in neurological recovery or histologically assessed tissue preservation were found among the three groups of animals 6 weeks after injury. No animal recovered the ability to walk. It is concluded that maintenance of hypercarbia or hypocarbia during the early postinjury period is no more therapeutic than maintenance of normocarbia. Mortality rates and tissue preservation data suggest, however, that postinjury hypocarbia may be less damaging than hypercarbia.


2002 ◽  
Vol 97 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Erkan Kaptanoglu ◽  
Selcuk Palaoglu ◽  
H. Selcuk Surucu ◽  
Mutlu Hayran ◽  
Etem Beskonakli

Object. There is a need for an accurate quantitative histological technique that also provides information on neurons, axons, vascular endothelium, and subcellular organelles after spinal cord injury (SCI). In this paper the authors describe an objective, quantifiable technique for determining the severity of SCI. The usefulness of ultrastructural scoring of acute SCI was assessed in a rat model of contusion injury. Methods. Spinal cords underwent acute contusion injury by using varying weights to produce graded SCI. Adult Wistar rats were divided into five groups. In the first group control animals underwent laminectomy only, after which nontraumatized spinal cord samples were obtained 8 hours postsurgery. The weight-drop technique was used to produce 10-, 25-, 50-, and 100-g/cm injuries. Spinal cord samples were also obtained in the different trauma groups 8 hours after injury. Behavioral assessment and ultrastructural evaluation were performed in all groups. When the intensity of the traumatic injury was increased, behavioral responses showed a decreasing trend. A similar significant negative correlation was observed between trauma-related intensity and ultrastructural scores. Conclusions. In the present study the authors characterize quantitative ultrastructural scoring of SCI in the acute, early postinjury period. Analysis of these results suggests that this method is useful in evaluating the degree of trauma and the effectiveness of pharmacotherapy in neuroprotection studies.


2005 ◽  
Vol 3 (4) ◽  
pp. 302-307 ◽  
Author(s):  
Christopher B. Shields ◽  
Y. Ping Zhang ◽  
Lisa B. E. Shields ◽  
Yingchun Han ◽  
Darlene A. Burke ◽  
...  

Object. There are no clinically based guidelines to direct the spine surgeon as to the proper timing to undertake decompression after spinal cord injury (SCI) in patients with concomitant stenosis-induced cord compression. The following three factors affect the prognosis: 1) severity of SCI; 2) degree of extrinsic spinal cord compression; and 3) duration of spinal cord compression. Methods. To elucidate further the relationship between varying degrees of spinal stenosis and a mild contusion-induced SCI (6.25 g-cm), a rat SCI/stenosis model was developed in which 1.13- and 1.24-mm-thick spacers were placed at T-10 to create 38 and 43% spinal stenosis, respectively. Spinal cord damage was observed after the stenosis—SCI that was directly proportional to the duration of spinal cord compression. The therapeutic window prior to decompression was 6 and 12 hours in the 43 and 38% stenosis—SCI lesions, respectively, to maintain locomotor activity. A significant difference in total lesion volume was observed between the 2-hour and the delayed time(s) to decompression (38% stenosis—SCI, 12 and 24 hours, p < 0.05; 43% stenosis—SCI, 24 hours, p < 0.05) indicating a more favorable neurological outcome when earlier decompression is undertaken. This finding was further supported by the animal's ability to support weight when decompression was performed by 6 or 12 hours compared with 24 hours after SCI. Conclusions. Analysis of the findings in this study suggests that early decompression in the rat improves locomotor function. Prolongation of the time to decompression may result in irreversible damage that prevents locomotor recovery.


Sign in / Sign up

Export Citation Format

Share Document