Neuroprotective effect of postischemic administration of progesterone in spontaneously hypertensive rats with focal cerebral ischemia

2000 ◽  
Vol 92 (5) ◽  
pp. 848-952 ◽  
Author(s):  
Yoshiaki Kumon ◽  
Soon C. Kim ◽  
Paul Tompkins ◽  
Alan Stevens ◽  
Saburo Sakaki ◽  
...  

Object. Exogenous progesterone has been shown to reduce brain edema and ischemia-induced cell damage and to improve physiological and neurological function during the early stage of focal cerebral ischemia. In the present study, the authors assessed the neuroprotective potential of progesterone during the late stage of ischemia in a transient middle cerebral artery (MCA) occlusion model in the rat.Methods. Forty-eight male spontaneously hypertensive rats were randomly assigned to six groups. Progesterone was dissolved in dimethyl sulfoxide (DMSO). In four groups of rats, the dissolved progesterone (4 mg/kg or 8 mg/kg) was administered for 2 or 7 days after ischemia. In two control groups DMSO was administered for 2 or 7 days after ischemia. Occlusion of the MCA was induced by insertion of an intraluminal suture, and reperfusion was accomplished by withdrawal of the suture. Treatment was initiated on reperfusion, which followed 2 hours of MCA occlusion, and continued once a day. Lesion volume, neurological deficit, and body weight loss were measured 2 or 7 days after ischemia, depending on the animal group.Treatment with a high dose of progesterone (8 mg/kg) resulted in reductions in lesion size, neurological deficits, and body weight, compared with control rats.Conclusions. Administration of progesterone to male rats 2 hours after MCA occlusion reduces ischemic brain damage and improves neurological deficit even 7 days after ischemia.

1996 ◽  
Vol 16 (4) ◽  
pp. 612-622 ◽  
Author(s):  
Ricardo Prado ◽  
Brant D. Watson ◽  
Weizhao Zhao ◽  
Hiroshi Yao ◽  
Raul Busto ◽  
...  

The potential of nitric oxide (NO) to influence positively or negatively the outcome of mechanically induced focal cerebral ischemia is still controversial. Recent evidence suggests that NO of vascular origin, whether synthesized from exogenously administered L-arginine (L-Arg) or from NO donor compounds, is beneficial but that of neuronal origin is not. However, the therapeutic potential of NO to ameliorate stroke induced by arterial thrombosis has not been reported. We assessed the therapeutic effect of L-Arg administration in spontaneously hypertensive rats (SHR) subjected to permanent photothrombotic occlusion of the distal middle cerebral artery (dMCA). The ipsilateral carotid artery was left unligated to enhance L-Arg delivery into the putative penumbral region. Local CBF (LCBF) was assessed at 30 min by the [14C]iodoantipyrine technique (n = 9), while histological infarct volumes and index of peripheral ischemic cell change were determined at 3 days (n = 7). Rats (n = 9) given 300 mg/kg L-Arg at 18 and 3 h before photothrombotic dMCA occlusion and at 5 min afterward displayed no significant differences in LCBF compared with animals (n = 8) injected with water (the carrier vehicle) and similarly irradiated. Infarct volumes were also similar, being 37.0 ± 9.7 mm3 (SD) in the vehicle-treated and 49.1 ± 17.2 mm3 (SD) in the L-Arg-treated groups (both n = 7), as were assessments of ischemic neuronal density in the penumbra. In contrast, L-Arg administered intravenously in a dose of 300 mg/kg to nonischemic SHR (n = 5) increased cortical CBF by ∼75% during a 70-min observation period. We conclude that thrombotic processes superimposed upon cerebral ischemia may facilitate tissue reactions that offset the potentially beneficial effect of L-Arg, and this caveat must be considered when proposing L-Arg for clinical treatment of focal thrombotic stroke.


1981 ◽  
Vol 54 (6) ◽  
pp. 773-782 ◽  
Author(s):  
Thomas H. Jones ◽  
Richard B. Morawetz ◽  
Robert M. Crowell ◽  
Frank W. Marcoux ◽  
Stuart J. FitzGibbon ◽  
...  

✓ An awake-primate model has been developed which permits reversible middle cerebral artery (MCA) occlusion during physiological monitoring. This method eliminates the ischemia-modifying effects of anesthesia, and permits correlation of neurological function with cerebral blood flow (CBF) and neuropathology. The model was used to assess the brain's tolerance to focal cerebral ischemia. The MCA was occluded for 15 or 30 minutes, 2 to 3 hours, or permanently. Serial monitoring evaluated neurological function, local CBF (hydrogen clearance), and other physiological parameters (blood pressure, blood gases, and intracranial pressure). After 2 weeks, neuropathological evaluation identified infarcts and their relation to blood flow recording sites. Middle cerebral artery occlusion usually caused substantial decreases in local CBF. Variable reduction in flow correlated directly with the variable severity of deficit. Release of occlusion at up to 3 hours led to clinical improvement. Pathological examination showed microscopic foci of infarction after 15 to 30 minutes of ischemia, moderate to large infarcts after 2 to 3 hours of ischemia, and in most cases large infarcts after permanent MCA occlusion. Local CBF appeared to define thresholds for paralysis and infarction. When local flow dropped below about 23 cc/100 gm/min, reversible paralysis occurred. When local flow fell below 10 to 12 cc/100 gm/min for 2 to 3 hours or below 17 to 18 cc/100 gm/min during permanent occlusion, irreversible local damage was observed. These studies imply that some cases of acute hemiplegia, with blood flow in the paralysis range, might be improved by surgical revascularization. Studies of local CBF might help identify suitable cases for emergency revascularization.


1972 ◽  
Vol 36 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Robert M. Crowell ◽  
Yngve Olsson

✓ Impairment of microvascular filling was demonstrated in relation to focal cerebral ischemia in the monkey. Temporary or sustained middle cerebral artery (MCA) clipping was achieved with a microsurgical technique. Animals were sacrificed by perfusion with a carbon black suspension. Brains were fixed in formalin, and the extent of microvascular carbon filling was estimated grossly and microscopically. In most animals, MCA occlusion of 2 hours to 7 days produced diminished filling in small vessels in the MCA territory of supply. The impairment of filling was most pronounced in the deep subcortical structures but also affected the cortex in some animals. Temporary and sustained occlusion of equal duration produced roughly equivalent areas of abnormal filling. The impairment of vascular filling tended to be more extensive with increasing duration of occlusion. Hypotension during MCA occlusion caused almost total non-filling of the microvasculature in the entire MCA territory. Impaired filling of vascular channels may play a role in the pathogenesis of some clinical cerebrovascular diseases.


1996 ◽  
Vol 36 (3) ◽  
pp. 151-155 ◽  
Author(s):  
Shingo KAWAMURA ◽  
Yiping LI ◽  
Mitsuru SHIRASAWA ◽  
Nobuyuki YASUI ◽  
Hitoshi FUKASAWA

2002 ◽  
Vol 176 (2) ◽  
pp. 355-363 ◽  
Author(s):  
R.R. Leker ◽  
A. Teichner ◽  
G. Lavie ◽  
E. Shohami ◽  
I. Lamensdorf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document