Ischemic tolerance in the rat neocortex following hypothermic preconditioning

2000 ◽  
Vol 93 (5) ◽  
pp. 845-851 ◽  
Author(s):  
Shinsaku Nishio ◽  
Masatoshi Yunoki ◽  
Zong-Fu Chen ◽  
Matthew J. Anzivino ◽  
Kevin S. Lee

Object. Ischemic neuronal damage associated with neurological and other types of surgery can have severe consequences for functional recovery after surgery. Hypothermia administered during and/or after ischemia has proved to be clinically beneficial and its effects often rival or exceed those of other therapeutic strategies. In the present study the authors examined whether transient hypothermia is an effective preconditioning stimulus for inducing ischemic tolerance in the brain.Methods. Adult rats were subjected to a 20-minute period of hypothermic preconditioning followed by an interval ranging from 6 hours to 7 days. At the end of this interval, the animals were subjected to transient focal ischemia induced by clamping one middle cerebral artery and both carotid arteries for 1 hour. The volume of cerebral infarction was assessed 1 or 7 days postischemia. In the first series of experiments, hypothermic preconditioning (28.5°C) with a postconditioning interval of 1 day reduced the extent of cerebral infarction measured 1 and 7 days postischemia. In the second series, hypothermic preconditioning (31.5°C) with postconditioning intervals of 6 hours, 1 day, or 2 days (but not 7 days) reduced the extent of cerebral infarction measured 1 day postischemia. Treatment with the protein synthesis inhibitor anisomycin blocked the protective effect of hypothermic preconditioning. In a final series of experiments, in vitro brain slices prepared from hypothermia-preconditioned (nonischemic) animals were shown to tolerate a hypoxic challenge better than slices prepared from unconditioned animals.Conclusions. These findings indicate that hypothermic preconditioning induces a form of delayed tolerance to focal ischemic damage. The time course over which tolerance occurs and the ability of a protein synthesis inhibitor to block tolerance suggest that increased expression of one or more gene products is necessary to establish tissue tolerance following hypothermia. The attenuation of hypoxic injury in vitro following in vivo preconditioning indicates that tolerance is due, at least in part, to direct effects on the brain neuropil. Hypothermic preconditioning could provide a relatively low-risk approach for improving surgical outcome after invasive surgery, including high-risk neurological and cardiovascular procedures.

2000 ◽  
Vol 7 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Teresa Montiel ◽  
Daniel Almeida ◽  
Iván Arango ◽  
Eduardo Calixto ◽  
César Casasola ◽  
...  

In electrophysiological terms, experimental models of durable information storage in the brain include long-term potentiation (LTP), long-term depression, and kindling. Protein synthesis correlates with these enduring processes. We propose a fourth example of long-lasting information storage in the brain, which we call the GABA-withdrawal syndrome (GWS). In rats, withdrawal of a chronic intracortical infusion of GABA, a ubiquitous inhibitory neurotransmitter, induced epileptogenesis at the infusion site. This overt GWS lasted for days. Anisomycin, a protein synthesis inhibitor, prevented the appearance of GWSin vivo. Hippocampal and neocortical slices showed a similar post-GABA hyperexcitabilityin vitroand an enhanced susceptibility to LTP induction. One to four months after the epileptic behavior disappeared, systemic administration of a subconvulsant dose of pentylenetetrazol produced the reappearance of paroxysmal activity. The long-lasting effects of tonicGABAAreceptor stimulation may be involved in long-term information storage processes at the cortical level, whereas the cessation ofGABAAreceptor stimulation may be involved in chronic pathological conditions, such as epilepsy. Furthermore, we propose that GWS may represent a common key factor in the addiction to GABAergic agents (for example, barbiturates, benzodiazepines, and ethanol). GWS represents a novel form of neurono-glial plasticity. The mechanisms of this phenomenon remain to be understood.


2011 ◽  
Vol 56 (1) ◽  
pp. 513-517 ◽  
Author(s):  
Arnold Louie ◽  
Brian D. VanScoy ◽  
Henry S. Heine ◽  
Weiguo Liu ◽  
Terry Abshire ◽  
...  

ABSTRACTBacillus anthraciscauses anthrax. Ciprofloxacin is a gold standard for the treatment of anthrax. Previously, using the non-toxin-producing ΔSterne strain ofB. anthracis, we demonstrated that linezolid was equivalent to ciprofloxacin for reducing the total (vegetative and spore) bacterial population. With ciprofloxacin therapy, the total population consisted of spores. With linezolid therapy, the population consisted primarily of vegetative bacteria. Linezolid is a protein synthesis inhibitor, while ciprofloxacin is not. Since toxins are produced only by vegetativeB. anthracis, the effect of linezolid and ciprofloxacin on toxin production is of interest. The effect of simulated clinical regimens of ciprofloxacin and linezolid on the vegetative and spore populations and on toxin production was examined in anin vitropharmacodynamic model over 15 days by using the toxin-producing Sterne strain ofB. anthracis. Ciprofloxacin and linezolid reduced the total Sterne population at similar rates. With ciprofloxacin therapy, the total Sterne population consisted of spores. With linezolid therapy, >90% of the population was vegetativeB. anthracis. With ciprofloxacin therapy, toxin was first detectable at 3 h and remained detectable for at least 5 h. Toxin was never detected with linezolid therapy. Ciprofloxacin and linezolid reduced the total Sterne population at similar rates. However, theB. anthracispopulation was primarily spores with ciprofloxacin therapy and was primarily vegetative bacteria with linezolid therapy. Toxin production was detected for at least 5 h with ciprofloxacin therapy but was never detected with linezolid treatment. Linezolid may have an advantage over ciprofloxacin for the treatment ofB. anthracisinfections.


1994 ◽  
Vol 141 (1) ◽  
pp. 15-31 ◽  
Author(s):  
F J Thomson ◽  
M S Johnson ◽  
R Mitchell ◽  
B Wolbers

Abstract The phospholipase A2 (PLA2) inhibitors, quinacrine, p-bromophenacyl bromide, ONO-RS-082, aristolochic acid and chloracysine blocked the priming effect of LHRH, but not acute LHRH-induced gonadotrophin release measured in anterior pituitary pieces in pro-oestrous rats in vitro. These results suggest that the intracellular mechanisms underlying LHRH priming are distinct from those which mediate LH release in the present circumstances in that they involve PLA2. Furthermore, neither LHRH-induced LH release from preprimed tissue nor Ca2+-induced LH release were attenuated by quinacrine, indicating that this inhibitor does not interfere with the general Ca2+-dependent secretory apparatus of the gonadotroph and that the critical period for its action is in the induction of priming. LHRH induced the release of [3H]arachidonic acid ([3H]AA) from [3H]AA-prelabelled anterior pituitary tissue from pro-oestrous rats; a response which was sensitive to inhibitors of PLA2, of protein kinase C (PKC) and of protein synthesis. Activation of PKC also resulted in [3H]AA release which was inhibited with exactly the same pharmacological profile as the response to LHRH. Both gonadotrophin secretion and [3H]AA release responses to LHRH and to phorbol ester varied in parallel during the oestrous cycle and in ovariectomized/oestradiol-17β-replaced animals, as did their sensitivity to quinacrine and the protein synthesis inhibitor cycloheximide. These results indicate that LHRH priming is dependent on a hormonally regulated cascade involving a distinct form of PKC acting through a protein synthesis-dependent step to release AA by means of PLA2 activity. The priming effect was mimicked (at least in part) by conditioning preincubation with AA, confirming the functional relevance of this signalling cascade. Results using standard inhibitors of lipoxygenase/epoxygenase pathways were equivocal as to whether these pathways were critically involved, whilst cyclo-oxygenase inhibitors were completely without effect. The steps downstream from AA (and its possible metabolites) by which stimulus–secretion coupling is up-regulated in priming remain to be clarified. Journal of Endocrinology (1994) 141, 15–31


1992 ◽  
Vol 76 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Stephen C. Saris ◽  
Paul Spiess ◽  
Daniel M. Lieberman ◽  
Shan Lin ◽  
Stuart Walbridge ◽  
...  

✓ Methods have recently been described for the isolation and expansion of lymphocytes that have trafficked into animal and human tumors. These CD8-positive tumor-infiltrating lymphocytes (TIL's) have exceptional trafficking ability to, and efficacy against, tumor targets in extracranial sites. Prior to Phase I clinical trials for patients with gliomas, adoptive immunotherapy with TIL's was studied in a mouse model of primary brain tumors to determine if intracerebral tumors have a similar response. Glioma 261 (GL261) tumors were grown in the subcutaneous space of C57BL/6 mice. After enzymatic digestion, the cells were incubated in vitro with interleukin-2 (IL-2) until a confluent population of T lymphocytes was present. The in vitro efficacy of these TIL's was tested against fresh GL261 targets with a chromium release assay; the in vivo efficacy was tested against GL261 tumors in the liver and against irradiated and nonirradiated GL261 tumors in the brain. Mice received one of the following: intraperitoneal saline; intraperitoneal IL-2 (7500 to 50,000 U three times daily for 5 days); IL-2 plus intravenous TIL's (1 to 3 × 107 cells); 10 Gy cranial irradiation; irradiation plus IL-2; or irradiation plus IL-2 plus TIL's. The TIL preparation killed 77% of tumor targets in 4 hours at an effector:target ratio of 100:1. In animals with GL261 tumors in the liver, at 2 weeks there were 93 ± 37, 128 ± 45, and 21 ± 14 liver metastases in the control, IL-2, and IL-2 plus TIL groups, respectively. However, in animals with GL261 tumors in the brain, no treatment group had an increased survival rate compared to the control group. It is concluded that, although TIL and IL-2 immunotherapy can be used effectively to treat brain tumors in vitro and at sites outside the central nervous system, it is ineffective against the same type of tumor in the brain. Different methods of delivery or different combinations of these immunomodulators may be more effective; however, based on these findings, treatment of patients with IL-2 and TIL cannot be recommended until efficacy has been demonstrated in an animal model.


1991 ◽  
Vol 74 (6) ◽  
pp. 956-961 ◽  
Author(s):  
Rafael J. Tamargo ◽  
Allen K. Sills ◽  
Carla S. Reinhard ◽  
Michael L. Pinn ◽  
Donlin M. Long ◽  
...  

✓ Controlled-release polymers have facilitated the interstitial delivery of drugs within the central nervous system. In the present study, dexamethasone was incorporated into ethylene-vinyl acetate polymers, which were then implanted adjacent to a 9L gliosarcoma in the brain of Fischer 344 rats. The effect of interstitial delivery of dexamethasone on peritumoral edema was assessed and compared to the effect of dexamethasone delivered systemically. Eighty-five rats underwent intracranial implantation of the 9L gliosarcoma. Five days later, the animals were randomly assigned to one of four treatment groups: Group 1 received intracranial implantation of controlled-release polymers containing dexamethasone; Group 2 received intraperitoneal implantation of controlled-release polymers containing dexamethasone; Group 3 received serial intraperitoneal injections of dexamethasone; and Group 4 received sham treatment. The animals were sacrificed 3 days after initiation of therapy and their brains were removed for measurement of the water content (edema) in the tumor-bearing and contralateral hemispheres. Brain and plasma samples were analyzed by reverse-phase high-performance liquid chromatography to determine the tissue and plasma concentrations of dexamethasone. Measurement of the release kinetics of dexamethasone from the ethylene-vinyl acetate polymers in an in vitro system showed that the drug was released in a controlled, tapering fashion. During the first 3 days of controlled release in vitro, 330 µg of a total content of 7.5 mg of dexamethasone was released into the medium. Analysis of tissue for drug levels demonstrated, however, that the interstitial delivery of this fractional amount of dexamethasone within the brain resulted in levels 19 times higher than those achieved by administering the full dose of 7.5 mg systemically over a 3-day period. Conversely, the systemic administration of dexamethasone resulted in plasma levels 16 times higher than those measured in the interstitial delivery of dexamethasone in the brain. Brain-water content determinations showed that the interstitial controlled release of the fractional amount of dexamethasone within the brain was as effective in controlling peritumoral edema as systemic administration of the full dose by serial intraperitoneal injections. The study demonstrates the following: 1) controlled-release polymeric carriers deliver biologically active dexamethasone in a sustained fashion; 2) very high concentrations of dexamethasone in brain tissue can be achieved using interstitial polymer-mediated drug delivery while minimizing plasma concentrations of this drug which are sometimes associated with serious systemic side effects; and 3) peritumoral brain edema can be effectively treated by the interstitial delivery of dexamethasone directly within the tumor bed.


2004 ◽  
Vol 101 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Zhi-Jian Chen ◽  
George T. Gillies ◽  
William C. Broaddus ◽  
Sujit S. Prabhu ◽  
Helen Fillmore ◽  
...  

Object. The goal of this study was to validate a simple, inexpensive, and robust model system to be used as an in vitro surrogate for in vivo brain tissues in preclinical and exploratory studies of infusion-based intraparenchymal drug and cell delivery. Methods. Agarose gels of varying concentrations and porcine brain were tested to determine the infusion characteristics of several different catheters at flow rates of 0.5 and 1 µl per minute by using bromophenol blue (BPB) dye (molecular weight [MW] ∼690) and gadodiamide (MW ∼573). Magnetic resonance (MR) imaging and videomicroscopy were used to measure the distribution of these infusates, with a simultaneous measurement of infusion pressures. In addition, the forces of catheter penetration and movement through gel and brain were measured. Agarose gel at a 0.6% concentration closely resembles in vivo brain with respect to several critical physical characteristics. The ratio of distribution volume to infusion volume of agarose was 10 compared with 7.1 for brain. The infusion pressure of the gel demonstrated profiles similar in configuration and magnitude to those of the brain (plateau pressures 10–20 mm Hg). Gadodiamide infusion in agarose closely resembled that in the brain, as documented using T1-weighted MR imaging. Gadodiamide distribution in agarose gel was virtually identical to that of BPB dye, as documented by MR imaging and videomicroscopy. The force profile for insertion of a silastic catheter into agarose gel was similar in magnitude and configuration to the force profile for insertion into the brain. Careful insertion of the cannula using a stereotactic guide is critical to minimize irregularity and backflow of infusate distribution. Conclusions. Agarose gel (0.6%) is a useful surrogate for in vivo brain in exploratory studies of convection-enhanced delivery.


2014 ◽  
Vol 26 (1) ◽  
pp. 186
Author(s):  
Y. Okudaira ◽  
H. Funahashi

In human, bovine, mouse, and rat sperm, translation of RNA to proteins in the mitochondrial ribosome during capacitation has been reported to be important for fertilization. The objective of this study was to examine effect of protein synthesis inhibitor (ribosome inhibitor) on boar sperm capacitation and IVF. Sperm from an ejaculated sperm-rich fraction of Berkshire boars were washed by centrifugation (1500 rpm for 35 min) in a Percoll gradient (45/90%) and then incubated in modified Medium-199 containing 0.4% BSA and 5 mM caffeine sodium benzoate, supplemented with or without a mitochondrial ribosome-specific (55S ribosome) inhibitor, chloramphenicol (CP; 0.3 mM), or a cytoplasmic ribosome-specific (80S ribosome) inhibitor, cyclohexide (CH; 3.6 mM), in an atmosphere of 5% CO2 in air at 39°C for 45 or 90 min. At 45 and 90 min after culture, sperm viability, motility, and chlortetracyclin-stained patterns (to assess the sperm functional status, capacitation, and acrosome reaction) were examined. Porcine oocytes were matured in vitro for 44 h in porcine oocyte medium supplemented with eCG, hCG, and dibutyryl cyclic adenosine monophosphate for the first 20 h. Matured oocytes after the removal of cumulus cells were co-cultured with sperm (final conc.: 2.5 × 105 cells mL–1) in the absence or presence of CP or CH for 8 h. Sperm penetrability was also determined. Statistical analyses of data from 4 replicated trials were performed by ANOVA. After 45 and 90 min of culture, neither CP nor CH affected sperm viability and motility (P > 0.05). The addition of CP after 45 and 90 min of culture significantly (P < 0.05) decreased capacitated and acrosome-reacted sperm rates, as detected by chlortetracyclin fluorescence assay (capacitated: control 9.6 v. CP 5.6%, control 17.8 v. CP 10.2%; acrosome reacted: control 4.6 v. CP 2.2%, control 9.2 v. CP 4.8%, respectively; P < 0.05). In the presence of CH, IVF rate and number of sperm per penetrated egg were decreased (control 80.8 v. CH 46.8%, 2.2 v. 1.4, respectively; P < 0.05). In the presence of CH, however, the percentage of metaphase II oocytes after co-culture with sperm for 8 h was lower than other 2 groups (control 87.6 v. CP 85.5 v. CH 74.0%; P < 0.05), and the percentage of A/T-II oocytes was higher than in the other 2 groups (control 1.1 v. CP 0 v. CH 9.4%; P < 0.05). From these results, we conclude that mitochondrial ribosome-specific inhibitor, chloramphenicol, affects capacitation and acrosome reaction but not penetration, whereas cytoplasmic ribosome-specific inhibitor, cyclohexide, decreases the number of oocytes that reach metaphase II stage and are penetrated.


2016 ◽  
Vol 60 (10) ◽  
pp. 6271-6280 ◽  
Author(s):  
Andrés Palencia ◽  
Xianfeng Li ◽  
Wei Bu ◽  
Wai Choi ◽  
Charles Z. Ding ◽  
...  

ABSTRACTThe recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains ofMycobacterium tuberculosishighlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective againstM. tuberculosisin TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), toM. tuberculosisLeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity againstM. tuberculosis. Importantly, their good oral bioavailability translates intoin vivoefficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.


1995 ◽  
Vol 268 (3) ◽  
pp. R699-R706 ◽  
Author(s):  
J. Liao ◽  
J. A. Keiser ◽  
W. E. Scales ◽  
S. L. Kunkel ◽  
M. J. Kluger

Using an isolated perfused rat liver (IPRL) preparation, we assessed whether corticosterone may contribute to the rise in tumor necrosis factor (TNF) and interleukin-6 (IL-6) in rats after injection with lipopolysaccharide (LPS) or exposure to psychological stress. Intravenous infusion of LPS into the IPRL led to dose-dependent increases in TNF and IL-6 concentrations in the effluent. Anisomycin, a protein synthesis inhibitor, completely blocked the rise in TNF and IL-6 concentration in the IPRL effluent, supporting the hypothesis that the synthesis (or release) of these cytokines was dependent on protein synthesis. Intravenous infusion of corticosterone at nonstressed (35 ng/ml) and stressed levels (350 ng/ml) increased TNF and/or IL-6 release. However, when LPS was combined with corticosterone, the lower dose of corticosterone facilitated the release of cytokines, whereas the higher dose of corticosterone suppressed the release of cytokines. We then showed that isolated Kupffer cells were capable of significant TNF and IL-6 production and that corticosterone decreased LPS-induced cytokine production in these cells. Our data support the hypothesis that the liver is an important source of circulating cytokines in response to LPS. In addition, although in vitro data generally support the hypothesis that corticosterone suppresses the production of cytokines, our in situ data support the hypothesis that physiological levels of corticosterone cause an increase in TNF and IL-6.


2019 ◽  
Vol 116 (17) ◽  
pp. 8155-8160 ◽  
Author(s):  
Jay Bassan ◽  
Lisa M. Willis ◽  
Ravi N. Vellanki ◽  
Alan Nguyen ◽  
Landon J. Edgar ◽  
...  

Protein synthesis is central to maintaining cellular homeostasis and its study is critical to understanding the function and dysfunction of eukaryotic systems. Here we report L-2-tellurienylalanine (TePhe) as a noncanonical amino acid for direct measurement of protein synthesis. TePhe is synthetically accessible, nontoxic, stable under biological conditions, and the tellurium atom allows its direct detection with mass cytometry, without postexperiment labeling. TePhe labeling is competitive with phenylalanine but not other large and aromatic amino acids, demonstrating its molecular specificity as a phenylalanine mimic; labeling is also abrogated in vitro and in vivo by the protein synthesis inhibitor cycloheximide, validating TePhe as a translation reporter. In vivo, imaging mass cytometry with TePhe visualizes translation dynamics in the mouse gut, brain, and tumor. The strong performance of TePhe as a probe for protein synthesis, coupled with the operational simplicity of its use, suggests TePhe could become a broadly applied molecule for measuring translation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document