scholarly journals Improving the overall efficiency of heat and power plants, thermal circuits of systems, devices, heat recovery units

Author(s):  
V.V. Surtaev ◽  
2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

Author(s):  
Antonio Agresta ◽  
Antonella Ingenito ◽  
Roberto Andriani ◽  
Fausto Gamma

Following the increasing interest of aero-naval industry to design and build systems that might provide fuel and energy savings, this study wants to point out the possibility to produce an increase in the power output from the prime mover propulsion systems of aircrafts. The complexity of using steam heat recovery systems, as well as the lower expected cycle efficiencies, temperature limitations, toxicity, material compatibilities, and/or costs of organic fluids in Rankine cycle power systems, precludes their consideration as a solution to power improvement for this application in turboprop engines. The power improvement system must also comply with the space constraints inherent with onboard power plants, as well as the interest to be economical with respect to the cost of the power recovery system compared to the fuel that can be saved per flight exercise. A waste heat recovery application of the CO2 supercritical cycle will culminate in the sizing of the major components.


Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.


2019 ◽  
pp. 28-34 ◽  
Author(s):  
Александр Константинович Чередниченко

The research’s subject is the processes of energy transformation of fuel in the ship gas turbine plant with thermochemical regeneration. Modern approaches to assessing the energy efficiency of ship power plants were considered. The characteristics of traditional and alternative marine fuels were analyzed. The use of methanol as a low-carbon marine fuel is discussed. It is proposed to increase the efficiency of methanol use by using synthesis gas obtained through thermochemical heat recovery of secondary energy resources of ship engines. The main objective of the study is to analyze the effects on the energy efficiency of steam thermochemical transformation of methanol of the limitations associated with the system of supplying gaseous fuel to the engine. The influence of pressure in the thermochemical reactor on the steam’s efficiency of reforming of methanol was analyzed. The design schemes of two variants of the ship gas turbine installation with thermochemical heat recovery by steam conversion of methanol are presented. The methanol conversion efficiency was determined by the heat potential of the exhaust gases and was calculated based on the thermal balance of the thermochemical reactor. The reactor’s model is two- component. The mathematical model of the turbocompressor unit is based on an enlarged calculation taking into account the total pressure loss in all elements of the gas-air duct. The results of mathematical modeling of processes in plants based on gas turbine engines of simple and regenerative cycles under conditions of fixed methanol’s consumption, the fixed temperature of the gas in the turbine’s front for environmental parameters according to ISO 19859: 2016 are presented. The efficiency of the scheme which used steam conversion of methanol at pressures corresponding to the working pressure in the combustion chamber was revealed. The increase in the energy efficiency of the installation is 3 ... 5 % with basic parameters and 10 ... 11 % for higher conduction temperatures or for catalytic reactors. The research results can be used in the promising power plants designing.


2013 ◽  
Vol 597 ◽  
pp. 45-50
Author(s):  
Sławomir Smoleń ◽  
Hendrik Boertz

One of the key challenges on the area of energy engineering is the system development for increasing the efficiency of primary energy conversion and use. An effective and important measure suitable for improving efficiencies of existing applications and allowing the extraction of energy from previously unsuitable sources is the Organic Rankine Cycle. Applications based on this cycle allow the use of low temperature energy sources such as waste heat from industrial applications, geothermal sources, biomass, fired power plants and micro combined heat and power systems.Working fluid selection is a major step in designing heat recovery systems based on the Organic Rankine Cycle. Within the framework of the previous original study a special tool has been elaborated in order to compare the influence of different working fluids on performance of an ORC heat recovery power plant installation. A database of a number of organic fluids has been developed. The elaborated tool should create a support by choosing an optimal working fluid for special applications and become a part of a bigger optimization procedure by different frame conditions. The main sorting criterion for the fluids is the system efficiency (resulting from the thermo-physical characteristics) and beyond that the date base contains additional information and criteria, which have to be taken into account, like environmental characteristics for safety and practical considerations.The presented work focuses on the calculation and optimization procedure related to the coupling heat source – ORC cycle. This interface is (or can be) a big source of energy but especially exergy losses. That is why the optimization of the heat transfer between the heat source and the process is (besides the ORC efficiency) of essential importance for the total system efficiency.Within the presented work the general calculation approach and some representative calculation results have been given. This procedure is a part of a complex procedure and program for Working Fluid Selection for Organic Rankine Cycle Applied to Heat Recovery Systems.


Sign in / Sign up

Export Citation Format

Share Document