scholarly journals MR Myelography for Identification of Spinal CSF Leak in Spontaneous Intracranial Hypotension

2014 ◽  
Vol 35 (10) ◽  
pp. 2007-2012 ◽  
Author(s):  
J.L. Chazen ◽  
J.F. Talbott ◽  
J.E. Lantos ◽  
W.P. Dillon
Cephalalgia ◽  
2016 ◽  
Vol 36 (13) ◽  
pp. 1291-1295 ◽  
Author(s):  
Teshamae S Monteith ◽  
Stephen F Kralik ◽  
William P Dillon ◽  
Randall A Hawkins ◽  
Peter J Goadsby

Objective The objective of this report is to compare computed tomography (CT) and magnetic resonance (MR) myelography with radioisotope cisternography (RC) for detection of spinal cerebrospinal (CSF) leaks. Methods We retrospectively reviewed 12 spontaneous intracranial hypotension (SIH) patients; CT and RC were performed simultaneously. Three patients had MR myelography. Results CT and/or MR myelography identified CSF leaks in four of 12 patients. RC detected spinal leaks in all three patients confirmed by CT myelography; RC identified the CSF leak location in two of three cases, and these were due to osteophytic spicules and/or discs. RC showed only enlarged perineural activity. Only intrathecal gadolinium MR myelography clearly identified a slow leak from a perineural cyst. In eight remaining cases, the leak site was unknown; however, two of these showed indirect signs of CSF leak on RC. CSF slow leaks from perineural cysts were the most common presumed etiology; and the cysts were best visualized on myelography. Conclusion RC is comparable to CT myelography but has spatial limitations and should be limited to atypical cases.


2015 ◽  
Vol 123 (3) ◽  
pp. 732-736 ◽  
Author(s):  
Julius Griauzde ◽  
Joseph J. Gemmete ◽  
Aditya S. Pandey ◽  
Neeraj Chaudhary

OBJECT A CSF leak can be difficult to locate in patients who present with spontaneous intracranial hypotension (SIH). The purpose of this case series was to describe the authors’ experience with intrathecal preservative-free normal saline challenge coupled with contrast-enhanced MR myelography (CEMRM), which was used to provoke and detect a CSF leakage site in patients with SIH. METHODS The authors performed a retrospective review of the records of patients who underwent preservative-free normal saline challenge followed by intrathecal gadolinium (Gd) contrast infusion and MR myelography from 2010 to 2012. RESULTS The records survey identified 5 patients who underwent 6 procedures. Intrathecal preservative-free normal saline challenge followed by CEMRM identified a CSF leak during 5 of the 6 procedures. Previous CT myelograms were available from 4 patients, which did not reveal a leakage site. A CT myelogram of 1 patient showed a single leak, but the authors’ saline challenge-CEMRM technique identified multiple additional leakage sites. Three patients exhibited transient postprocedural symptoms related to the saline infusion, but no long-term or permanent adverse effects related to the procedure were observed. CONCLUSIONS Instillation of preservative-free normal saline into the thecal sac followed by intrathecal Gd infusion is a safe technique that may increase the detection of a CSF leak on MR myelography images in patients with SIH.


2020 ◽  
Vol 32 (2) ◽  
pp. 305-310 ◽  
Author(s):  
Wouter I. Schievink ◽  
Marcel M. Maya ◽  
Franklin G. Moser ◽  
Alexander Tuchman ◽  
Rachelle B. Cruz ◽  
...  

Spontaneous CSF–venous fistulas may be present in up to one-fourth of patients with spontaneous intracranial hypotension. This is a recently discovered type of CSF leak, and much remains unknown about these fistulas. Spinal CSF–venous fistulas are usually seen in coexistence with a spinal meningeal diverticulum, suggesting the presence of an underlying structural dural weakness at the proximal portion of the fistula. The authors now report the presence of soft-tissue venous/venolymphatic malformations associated with spontaneous spinal CSF–venous fistulas in 2 patients with spontaneous intracranial hypotension, suggesting a role for distal venous pathology. In a third patient with spontaneous intracranial hypotension and a venolymphatic malformation, such a CSF–venous fistula is strongly suspected.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
B Kewlani ◽  
I Hussain ◽  
J Greenfield

Abstract The hallmark symptom of spontaneous intracranial hypotension (SIH) is orthostatic headaches which manifests secondary to cerebrospinal fluid (CSF) hypovolaemia. Well-recognised aetiologies include trauma which includes procedures such as lumbar punctures and spinal surgery. More recently, structural defects such as bony osteophytes and calcified or herniated discs have been attributed to mechanically compromising dural integrity consequently resulting in CSF leak and symptom manifestation. A thorough literature review noted only a handful of such cases. We report the case of a thirty-two-year-old Asian female who presented with a one-month history of new-onset progressively worsening orthostatic headaches. Workup included MRI of the thoracic spine which revealed an epidural collection of CSF consequently prompting a dynamic CT-myelogram of the spine which not only helped to confirm severe cerebral hypotension but also suggested the underlying cause as being a dorsally projecting osteophyte-complex at level T2-3. Conservative and medical management including bed rest, analgesia, mechanical compression, and epidural blood patches failed to alleviate symptoms and a permanent surgical cure was eventually sought. The surgery involved T2-T3 laminectomy and osteophytectomy and at a 3-month follow-up, complete resolution of symptoms was noted.


2000 ◽  
Vol 92 (5) ◽  
pp. 873-876 ◽  
Author(s):  
Akira Matsumura ◽  
Izumi Anno ◽  
Hiroshi Kimura ◽  
Eiichi Ishikawa ◽  
Tadao Nose

✓ The authors describe a case of spontaneous intracranial hypotension in which the leakage site was determined by using magnetic resonance (MR) myelography. This technique demonstrated the route of cerebrospinal fluid (CSF) leakage, whereas other methods failed to show direct evidence of leakage. Magnetic resonance myelography is a noninvasive method that is highly sensitive in detecting CSF leakage. This is the first report in which a site of CSF leakage was detected using MR myelography.


Cephalalgia ◽  
2003 ◽  
Vol 23 (7) ◽  
pp. 552-555 ◽  
Author(s):  
E Ferrante ◽  
A Citterio ◽  
A Savino ◽  
P Santalucia

A 26-year-old man with Marfan's syndrome had postural headache. Brain MRI with gadolinium showed diffuse pachymeningeal enhancement. MRI myelography revealed bilateral multiple large meningeal diverticula at sacral nerve roots level. He was suspected to have spontaneous intracranial hypotension syndrome. Eight days later headache improved with bed rest and hydration. One month after the onset he was asymptomatic and 3 months later brain MRI showed no evidence of diffuse pachymeningeal enhancement. The 1-year follow-up revealed no neurological abnormalities. The intracranial hypotension syndrome likely resulted from a CSF leak from one of the meningeal diverticula. In conclusion patients with spinal meningeal diverticula (frequently seen in Marfan's syndrome) might be at increased risk of developing CSF leaks, possibly secondary to Valsalva maneuver or minor unrecognizedtrauma.


2012 ◽  
Vol 116 (4) ◽  
pp. 749-754 ◽  
Author(s):  
Wouter I. Schievink ◽  
Marc S. Schwartz ◽  
M. Marcel Maya ◽  
Franklin G. Moser ◽  
Todd D. Rozen

Object Spontaneous intracranial hypotension is an important cause of headaches and an underlying spinal CSF leak can be demonstrated in most patients. Whether CSF leaks at the level of the skull base can cause spontaneous intracranial hypotension remains a matter of controversy. The authors' aim was to examine the frequency of skull base CSF leaks as the cause of spontaneous intracranial hypotension. Methods Demographic, clinical, and radiological data were collected from a consecutive group of patients evaluated for spontaneous intracranial hypotension during a 9-year period. Results Among 273 patients who met the diagnostic criteria for spontaneous intracranial hypotension and 42 who did not, not a single instance of CSF leak at the skull base was encountered. Clear nasal drainage was reported by 41 patients, but a diagnosis of CSF rhinorrhea could not be established. Four patients underwent exploratory surgery for presumed CSF rhinorrhea. In addition, the authors treated 3 patients who had a postoperative CSF leak at the skull base following the resection of a cerebellopontine angle tumor and developed orthostatic headaches; spinal imaging, however, demonstrated the presence of a spinal source of CSF leakage in all 3 patients. Conclusions There is no evidence for an association between spontaneous intracranial hypotension and CSF leaks at the level of the skull base. Moreover, the authors' study suggests that a spinal source for CSF leakage should even be suspected in patients with orthostatic headaches who have a documented skull base CSF leak.


2010 ◽  
Vol 112 (2) ◽  
pp. 295-299 ◽  
Author(s):  
Wouter I. Schievink ◽  
M. Marcel Maya ◽  
Brian K. Pikul ◽  
Charles Louy

Subdural hematoma is a relatively common complication of long-term anticoagulation, particularly in the elderly. The combination of anticoagulation and cerebral cortical atrophy is believed to be sufficient to explain the subdural bleeding. The authors report a series of elderly patients who were on a regimen of anticoagulation and developed chronic subdural hematomas (SDHs) due to a spontaneous spinal CSF leak. They reviewed the medical records and imaging studies of a consecutive group of patients with spontaneous intracranial hypotension who were evaluated at Cedars-Sinai Medical Center. Among 141 patients with spontaneous spinal CSF leaks and spontaneous intracranial hypotension, 3 (2%) were taking anticoagulants at the time of onset of symptoms. The mean age of the 3 patients (1 woman and 2 men) was 74 years (range 68–86 years). All 3 patients had chronic SDHs measuring between 12 and 23 mm in maximal diameter. The SDHs resolved after treatment of the underlying spontaneous spinal CSF leak, and there was no need for hematoma evacuation. Epidural blood patches were used in 2 patients, and percutaneous placement of a fibrin sealant was used in 1 patient. The presence of an underlying spontaneous spinal CSF leak should be considered in patients with chronic SDHs, even among the elderly taking anticoagulants.


Author(s):  
Farnaz Amoozegar ◽  
Darryl Guglielmin ◽  
William Hu ◽  
Denise Chan ◽  
Werner J. Becker

A literature search found no clinical trials or guidelines addressing the management of spontaneous intracranial hypotension (SIH). Based on the available literature and expert opinion, we have developed recommendations for the diagnosis and management of SIH. For typical cases, we recommend brain magnetic resonance (MR) imaging with gadolinium to confirm the diagnosis, and conservative measures for up to two weeks. If the patient remains symptomatic, up to three non-directed lumbar epidural blood patches (EBPs) should be considered. If these are unsuccessful, non-invasive MR myelography, radionuclide cisternography, MR myelography with intrathecal gadolinium, or computed tomography with myelography should be used to localize the leak. If the leak is localized, directed EPBs should be considered, followed by fibrin sealant or neurosurgery if necessary. Clinically atypical cases with normal brain MR imaging should be investigated to localize the leak. Directed EBPs can be used if the leak is localized; non-directed EBPs should be used only if there are indirect signs of SIH.


Sign in / Sign up

Export Citation Format

Share Document