scholarly journals Why Multispecies’ Flourishing?

Author(s):  
Steven Khan ◽  
G. Michael Bowen

For a while now we have been working on an idea, a framework/perspective/way of knowing, being, and doing that we believe needs to be more explicitly considered and written about in mathematics, science and technology education. In this editorial we intend to introduce this idea, what the important parts of it are, discuss why we believe it is important for both research and the teaching of children, how it could be incorporated into science, mathematics and technology classes, and why we think it important enough to be researched and written about for future issues of this journal. 

2006 ◽  
Vol 931 ◽  
Author(s):  
Kamanio Chattopadhyay

ABSTRACTThis article explores issues and challenges in the field of education in nanoscience and technology with special emphasis with respect to India, where an expanding programme of research in nano science and technology is in place. The article does not concentrate on actual curricula that are needed in nano science and technology education course. Rather it focuses on the desirability of nanoscience and technology education at different levels of education and future prospect of students venturing into this within the economic and cultural milieu of India. We argue that care is needed in developing the education programme in India. However, the risk is worth taking as the education on nanoscience and technology can bridge the man power gap not only in this area of technology but also related technologies of hardware and micro electronics for which the country is a promising destination at global level. This will also unlock the demographical advantage that India will enjoy in the next five decades.


Author(s):  
Y. Ito ◽  
H. Ikemitsu ◽  
K. Nango

This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.


Sign in / Sign up

Export Citation Format

Share Document