scholarly journals Investigation of the effects of opening size and location on punching shear resistance of flat slabs using Abaqus

Author(s):  
Nguyen Tuan Trung ◽  
Pham Thanh Tung

The paper presents a numerical study on the effects of opening size and location on punching shear resistance of flat slabs without drop panels and shear reinforcement using ABAQUS. The study proposes an ABAQUS model that is enable to predict the punching shear resistance of flat slabs with openings. The model is validated well with the experimental data in literature. Using the validated numerical model, the effects of opening size and location on the punching shear resistance of flat slabs are then investigated, and the numerical results are compared with those predicted by ACI 318-19 and TCVN 5574:2018. The comparison between experimental and numerical results shows that the ABAQUS model is reliable. The punching shear resistances calculated by ACI 318-19 and TCVN 5574:2018 with different opening sizes and locations are agreed well to each other, since the design principles between two codes now are similar.

2021 ◽  
Vol 226 ◽  
pp. 111319
Author(s):  
Marcus Ricker ◽  
Tânia Feiri ◽  
Konstantin Nille-Hauf ◽  
Viviane Adam ◽  
Josef Hegger

2021 ◽  
Vol 1203 (2) ◽  
pp. 022108
Author(s):  
Daniel Čereš ◽  
Katarína Gajdošová

Abstract The main reasons for strengthening flat slabs are the change of the use of a building, increase in the value of loads, degradation of the concrete cover layer, or insufficient reinforcement. This paper is focused on the assessment of punching shear capacity of the strengthened flat slabs without shear reinforcement. One of the possibilities how to enhance punching shear capacity is the addition of reinforced concrete topping. The main goal of this paper is to compare the possibilities for calculation of the increase in the punching shear capacity by investigation of the influence of different thicknesses of concrete toppings and different reinforcement ratio. A reference specimen is represented by a fragment of a flat slab with the thickness of h = 200 mm supported by circular column with the diameter of 250 mm. Three different thicknesses (50 mm, 100 mm, 150 mm) of concrete toppings were considered together with three different reinforcement ratios for each thickness of concrete overlay. Theoretical predictions of the punching shear resistance of flat slabs were evaluated by design guidelines according to the relevant standards: Eurocode 2 (EN 1992-1-1), Model Code 2010 and draft of the second generation of Eurocode 2 (prEN 1992-1-1). The differences in the influence of reinforcement ratio are significant. In Model Code 2010 the reinforcement ratio in concrete topping was considered in equation of moment of resistance. This is unlike in both of the mentioned Eurocodes, where the reinforcement ratio was assumed as a geometric average value of the original reinforcement ratio in the slab before strengthening and of the reinforcement ratio of concrete topping. All the predicted theoretical calculations are based on the perfect connection and bond between the original and new layer of concrete. These predictions should be verified by experimental investigation, which is going to be prepared shortly. By the additional increase in the thickness of concrete topping or in the amount of added reinforcement the attention should be payed to the limitation of the punching shear resistance by the value of the maximum punching shear resistance in the compression concrete strut.


Author(s):  
Erfan Niazi ◽  
M. J. Mahjoob ◽  
Ardeshir Bangian

Cavitation in pumps is one of the most important causes of damage to pumps impellers/inducers. A numerical model is developed here to simulate the pump hydraulics in different conditions. Experiments are also conducted to validate the computer simulations. To verify the numerical model, the h–m˙ (head versus mass flow rate) of the model is compared with the experimental data. The system is then run under cavitation state. Two methods are applied to monitor the cavitation threshold: first by using stroboscope and observing cavitation bubbles through the transparent casing of the pump and second by checking the NPSHA value for cavitation based on ISO3555. The paper then compares the experimental and numerical results to find the strengths and weaknesses of the numerical model.


2022 ◽  
Vol 253 ◽  
pp. 113671
Author(s):  
Victor Hugo Dalosto de Oliveira ◽  
Henrique Jorge Nery de Lima ◽  
Guilherme Sales Melo

This research targets to maximize the ductility and strength of the reinforced concrete flat slabs. However, to be efficient, the shear reinforcement must be anchored well in the tension and compression zones of the slab. The test results on the slab-column connection models which provided with shear reinforcement are introduced in this study. The benefits of using shear reinforcement are to reduce the slab thickness, and to minimize both the cost and the total weight of the structure. Twelve flat slab specimens have been tested to study the effect of different types of steel RFT on the punching shear of the flat slab. The experimental parameters include no shear reinforcement which study the advantage of using tension RFT ONLY against punching shear, no shear reinforcement which study the advantage of using compression RFT against punching shear, shear RFT (Vertical Stirrups) which study the effect of using shear RFT with constant distribution 0.5d, and a new distribution of shear stirrups which study the effect of using new different width & spacing of vertical stirrups. The twelve specimens were loaded with concentrated load at the mid span until failure. The general behavior of the deformation of the tested slab specimens was examined and recorded (cracking, deflection, and strain in both steel and concrete). A comparison established between the experimental and the numericaltheoretical results obtained from applying the punching shear strength formula given in design codes, and finite element modeling analysis; ABAQUS 2017 software package was used for this analysis. A total of six building codes were examined with regard to their provisions concerning the punching shear. A comparison had been made between the research test results and the codes equations to improve the methods of the analysis about the flat slabs. This study aimed to improve the punching shear capacity of flat slab which leads to more accurate results compared with the codes predictions. To achieve this aim, an experimental and numerical study was carried out for this investigation.


2017 ◽  
Vol 259 ◽  
pp. 232-237
Author(s):  
Lucia Majtánová ◽  
Jaroslav Halvonik ◽  
Ján Hanzel

Two ways how to determine maximum punching resistance of flat slabs with shear reinforcement are currently used. The first way is verification of the concrete strut capacity at the column periphery defined as VRd,max. The second limit is defined as kmax multiple of the punching shear resistance without shear reinforcement VRd,c. The values of kmax are proposed usually in between 1.4 and 2.0. Results of the experimental tests are presented in the paper that were focused on above mentioned limits, whether failure of the struts can precede any other form of punching failure that is limited by kmax*VRd,c. Two experimental slab samples reinforced with high amount of shear reinforcement that increased punching capacity above capacity of the concrete struts were tested together with two slab samples cast without shear reinforcement. Comparison has shown that punching resistance of flat slab with shear reinforcement has been 1.7 times higher than resistance without shear reinforcement. While some standards allow for use kmax value of 1.9 in this case. This indicates that limits based only on the kmax factors may overestimate actual maximum punching shear resistance.


2011 ◽  
Vol 14 (1) ◽  
pp. 180-196
Author(s):  
A M Elshihy ◽  
H A ShehabEldeen ◽  
O Shaalan ◽  
R S Mahmoud

Sign in / Sign up

Export Citation Format

Share Document