RECURRENT NEURAL CONTROL FOR ROBOT TRAJECTORY TRACKING

2002 ◽  
Vol 35 (1) ◽  
pp. 283-288 ◽  
Author(s):  
Edgar N. Sanchez ◽  
Jose P. Perez ◽  
Luis J. Ricalde
Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 441 ◽  
Author(s):  
Sergio Barrios-dV ◽  
Michel Lopez-Franco ◽  
Jorge D. Rios ◽  
Nancy Arana-Daniel ◽  
Carlos Lopez-Franco ◽  
...  

This paper presents a path planning and trajectory tracking system for a BlueBotics Shrimp III®, which is an articulate mobile robot for rough terrain navigation. The system includes a decentralized neural inverse optimal controller, an inverse kinematic model, and a path-planning algorithm. The motor control is obtained based on a discrete-time recurrent high order neural network trained with an extended Kalman filter, and an inverse optimal controller designed without solving the Hamilton Jacobi Bellman equation. To operate the whole system in a real-time application, a Xilinx Zynq® System on Chip (SoC) is used. This implementation allows for a good performance and fast calculations in real-time, in a way that the robot can explore and navigate autonomously in unstructured environments. Therefore, this paper presents the design and implementation of a real-time system for robot navigation that integrates, in a Xilinx Zynq® System on Chip, algorithms of neural control, image processing, path planning, and inverse kinematics and trajectory tracking.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
J. Humberto Pérez-Cruz ◽  
José de Jesús Rubio ◽  
Rodrigo Encinas ◽  
Ricardo Balcazar

The trajectory tracking for a class of uncertain nonlinear systems in which the number of possible states is equal to the number of inputs and each input is preceded by an unknown symmetric deadzone is considered. The unknown dynamics is identified by means of a continuous time recurrent neural network in which the control singularity is conveniently avoided by guaranteeing the invertibility of the coupling matrix. Given this neural network-based mathematical model of the uncertain system, a singularity-free feedback linearization control law is developed in order to compel the system state to follow a reference trajectory. By means of Lyapunov-like analysis, the exponential convergence of the tracking error to a bounded zone can be proven. Likewise, the boundedness of all closed-loop signals can be guaranteed.


Sign in / Sign up

Export Citation Format

Share Document