An Autonomous Path Controller in a System on Chip for Shrimp Robot
This paper presents a path planning and trajectory tracking system for a BlueBotics Shrimp III®, which is an articulate mobile robot for rough terrain navigation. The system includes a decentralized neural inverse optimal controller, an inverse kinematic model, and a path-planning algorithm. The motor control is obtained based on a discrete-time recurrent high order neural network trained with an extended Kalman filter, and an inverse optimal controller designed without solving the Hamilton Jacobi Bellman equation. To operate the whole system in a real-time application, a Xilinx Zynq® System on Chip (SoC) is used. This implementation allows for a good performance and fast calculations in real-time, in a way that the robot can explore and navigate autonomously in unstructured environments. Therefore, this paper presents the design and implementation of a real-time system for robot navigation that integrates, in a Xilinx Zynq® System on Chip, algorithms of neural control, image processing, path planning, and inverse kinematics and trajectory tracking.