scholarly journals Human-Machine Interaction in Automated Vehicle: The ABV Project

2014 ◽  
Vol 47 (3) ◽  
pp. 6344-6349 ◽  
Author(s):  
Chouki Sentouh ◽  
Jean-Christophe Popieul ◽  
Serge Debernard ◽  
Serge Boverie
2021 ◽  
Author(s):  
J. B. Manchon ◽  
Mercedes Bueno ◽  
Jordan Navarro

Automated driving is becoming a reality, such technology raises new concerns about human-machine interaction on-road. Sixty-one drivers participated in an experiment aiming to better understand the influence of initial level of trust (Trustful vs Distrustful) on drivers’ behaviors and trust calibration during simulated Highly Automated Driving (HAD). The automated driving style was manipulated as positive (smooth) or negative (abrupt) to investigate human-machine early interactions. Trust was assessed over time through questionnaires. Drivers’ visual behaviors and take-over performances during an unplanned take-over request were also investigated. Results showed an increase of trust in automation over time, for both Trustful and Distrustful drivers regardless the automated driving style. Trust was also found to fluctuate over time depending on the specific events handled by the automated vehicle. Take-over performances were not influenced by the initial level of trust nor automated driving style.


Author(s):  
J. B. Manchon ◽  
Mercedes Bueno ◽  
Jordan Navarro

Objective Automated driving is becoming a reality, and such technology raises new concerns about human–machine interaction on road. This paper aims to investigate factors influencing trust calibration and evolution over time. Background Numerous studies showed trust was a determinant in automation use and misuse, particularly in the automated driving context. Method Sixty-one drivers participated in an experiment aiming to better understand the influence of initial level of trust (Trustful vs. Distrustful) on drivers’ behaviors and trust calibration during two sessions of simulated automated driving. The automated driving style was manipulated as positive (smooth) or negative (abrupt) to investigate human–machine early interactions. Trust was assessed over time through questionnaires. Drivers’ visual behaviors and take-over performances during an unplanned take-over request were also investigated. Results Results showed an increase of trust over time, for both Trustful and Distrustful drivers regardless the automated driving style. Trust was also found to fluctuate over time depending on the specific events handled by the automated vehicle. Take-over performances were not influenced by the initial level of trust nor automated driving style. Conclusion Trust in automated driving increases rapidly when drivers’ experience such a system. Initial level of trust seems to be crucial in further trust calibration and modulate the effect of automation performance. Long-term trust evolutions suggest that experience modify drivers’ mental model about automated driving systems. Application In the automated driving context, trust calibration is a decisive question to guide such systems’ proper utilization, and road safety.


2021 ◽  
pp. 1-9
Author(s):  
Harshadkumar B. Prajapati ◽  
Ankit S. Vyas ◽  
Vipul K. Dabhi

Face expression recognition (FER) has gained very much attraction to researchers in the field of computer vision because of its major usefulness in security, robotics, and HMI (Human-Machine Interaction) systems. We propose a CNN (Convolutional Neural Network) architecture to address FER. To show the effectiveness of the proposed model, we evaluate the performance of the model on JAFFE dataset. We derive a concise CNN architecture to address the issue of expression classification. Objective of various experiments is to achieve convincing performance by reducing computational overhead. The proposed CNN model is very compact as compared to other state-of-the-art models. We could achieve highest accuracy of 97.10% and average accuracy of 90.43% for top 10 best runs without any pre-processing methods applied, which justifies the effectiveness of our model. Furthermore, we have also included visualization of CNN layers to observe the learning of CNN.


Author(s):  
Xiaochen Zhang ◽  
Lanxin Hui ◽  
Linchao Wei ◽  
Fuchuan Song ◽  
Fei Hu

Electric power wheelchairs (EPWs) enhance the mobility capability of the elderly and the disabled, while the human-machine interaction (HMI) determines how well the human intention will be precisely delivered and how human-machine system cooperation will be efficiently conducted. A bibliometric quantitative analysis of 1154 publications related to this research field, published between 1998 and 2020, was conducted. We identified the development status, contributors, hot topics, and potential future research directions of this field. We believe that the combination of intelligence and humanization of an EPW HMI system based on human-machine collaboration is an emerging trend in EPW HMI methodology research. Particular attention should be paid to evaluating the applicability and benefits of the EPW HMI methodology for the users, as well as how much it contributes to society. This study offers researchers a comprehensive understanding of EPW HMI studies in the past 22 years and latest trends from the evolutionary footprints and forward-thinking insights regarding future research.


ATZ worldwide ◽  
2021 ◽  
Vol 123 (3) ◽  
pp. 46-49
Author(s):  
Tobias Hesse ◽  
Michael Oehl ◽  
Uwe Drewitz ◽  
Meike Jipp

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Magbool Alelyani ◽  
Sultan Alamri ◽  
Mohammed S. Alqahtani ◽  
Alamin Musa ◽  
Hajar Almater ◽  
...  

Artificial intelligence (AI) is a broad, umbrella term that encompasses the theory and development of computer systems able to perform tasks normally requiring human intelligence. The aim of this study is to assess the radiology community’s attitude in Saudi Arabia toward the applications of AI. Methods: Data for this study were collected using electronic questionnaires in 2019 and 2020. The study included a total of 714 participants. Data analysis was performed using SPSS Statistics (version 25). Results: The majority of the participants (61.2%) had read or heard about the role of AI in radiology. We also found that radiologists had statistically different responses and tended to read more about AI compared to all other specialists. In addition, 82% of the participants thought that AI must be included in the curriculum of medical and allied health colleges, and 86% of the participants agreed that AI would be essential in the future. Even though human–machine interaction was considered to be one of the most important skills in the future, 89% of the participants thought that it would never replace radiologists. Conclusion: Because AI plays a vital role in radiology, it is important to ensure that radiologists and radiographers have at least a minimum understanding of the technology. Our finding shows an acceptable level of knowledge regarding AI technology and that AI applications should be included in the curriculum of the medical and health sciences colleges.


Sign in / Sign up

Export Citation Format

Share Document