scholarly journals Some causes of formation of colour during storage of hydrogen-peroxide bleached Norway spruce mechanical pulp

2014 ◽  
Vol 29 (2) ◽  
pp. 356-366
Author(s):  
Sofia Enberg ◽  
Mats Rundlöf ◽  
Magnus Paulsson ◽  
Patrik Axelsson ◽  
Øyvind Eriksen ◽  
...  

Abstract The discolouration of hydrogen-peroxide bleached Norway spruce mechanical pulp during storage in mill systems was studied and the contributions of process water, iron and dyes were evaluated over the visible spectrum. Washing of the pulp made it less sensitive to storage, possibly due to the removal of extractives, lignin-like substances, iron and pulp fines. Storage in white water gave extensive discolouration with a shoulder in the absorption spectrum at around 550- 650 nm. Most of the colour was associated with pulp fines or filler but some colour was also found in smaller fractions and in the water phase. The addition of ferric ions increased the light absorption coefficient during storage, initially at short wavelengths and then over the whole spectrum, but could not explain the increased absorption at 550-650 nm and could not be the only cause of the darkening in the mill system. A cationic basic violet dye gave a shoulder in the absorption spectrum similar to that in the mill system, but the absorption in this area did not increase during storage. Model calculations indicate that ferric ions together with violet and red dyes could explain a major part, but not all, of the colour observed in the mill system after storage. The darkening not accounted for at longer wavelengths and around 550-650 nm is suggested to be related to fines and fillers including dissolved and colloidal substances associated with these particles.

TAPPI Journal ◽  
2018 ◽  
Vol 17 (11) ◽  
pp. 601-607
Author(s):  
Alan Rudie ◽  
Peter Hart

The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.


2006 ◽  
Vol 21 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Eva Svensson Rundlöf ◽  
Eric Zhang ◽  
Liming Zhang ◽  
Göran Gellerstedt

Investigation of the Rb I absorption spectrum between 40 and 120 Å has revealed a broad absorption maximum in the 3d photoionization continuum, as well as discrete features associated with the excitation of a 3d-subshell electron. The discrete structure is identified, Hartree-Fock calculations of the transition energies are given and the absorption maximum is discussed in relation to similar spectra and to recent random phase approximation with exchange (r.p.a.e.) and independent particle model calculations.


1951 ◽  
Vol 47 (0) ◽  
pp. 591-616 ◽  
Author(s):  
W. G. Barb ◽  
J. H. Baxendale ◽  
P. George ◽  
K. R. Hargrave

1997 ◽  
Vol 36 (2-3) ◽  
pp. 151-154 ◽  
Author(s):  
H. Grigoropoulou ◽  
C. Philippopoulos

The chemical oxidation of phenol and chlorophenols with hydrogen peroxide in the presence of soluble iron can be economically attractive at low oxidant consumption, leading then to intermediates that are more easily biodegradable. The homogeneous oxidation of phenol and chlorophenols in aqueous solutions with hydrogen peroxide is studied at oxidant : phenol ratio of about 4:1 and 16:1 (mol/mol) at various catalyst concentrations, at ambient temperature without pH control. Ferric chloride, ferric and ferrous sulphate and ferrous ammonium sulphate are used as oxidation catalysts. Ferric salts induce higher oxidation rates than ferrous ones and the nature of the anions present does not affect reaction rate. 4-Chlorophenol is found to be most resistant to oxidation and 2,4,6-Trichlorophenol is not attacked by hydrogen peroxide in the presence of ferric ions at the experimental conditions studied.


1971 ◽  
Vol 49 (12) ◽  
pp. 1030-1037 ◽  
Author(s):  
H. Kobayashi ◽  
M. A. Ali

A technique for recording electroretinograms from the unpunctured eyes in situ of living, anesthetized fish is described. This technique permits the use of the same fish in a number of experiments over a period of weeks, months, or years. Using this technique the spectral sensitivity of dark-adapted (scotopic) and light-adapted (photopic) fish was measured at 13 bands of the visible spectrum. The scotopic curves of albino and pigmented trout thus obtained in the winter have their maxima around 525 nm which differ from that of the absorption spectrum of the scotopic pigment in situ and in vitro of older fish obtained in the summer. The photopic curve of the pigmented fish is a broad one with humps around 425 nm, 545 nm, and 595 nm. The albino's curve has a relatively narrow band with a peak around 630 nm and a shoulder at about 550 nm. The difference between the shapes of the two curves may be ascribed to the increase in the intensity of light of longer wavelengths within the eyeball of the albino, due to reflection from blood vessels and sclera caused by the absence of pigmentation.


Sign in / Sign up

Export Citation Format

Share Document