scholarly journals ENHANCED SOLUBILITY OF ANTIHYPERTENSIVE DRUG USING HYDROPHILIC CARRIER-BASED POTENT SOLID DISPERSION SYSTEMS

2012 ◽  
Vol 4 (2) ◽  
pp. 58-62
Author(s):  
Aparajita Malakar ◽  
Bishwajit Bokshi ◽  
Utpal Kumar Karmakar

The aim of the present study was to increase the solubility of a poorly water soluble BCS class II drug, valsartan. Liquisolid technology and solid dispersion by kneading method were techniques used to improve the solubility of the drug by using non-volatile solvents and some hydrophilic carriers. Liquisolid compacts were prepared by dissolving the drug in suitable non volatile solvents. The various non volatile solvents used were PG, PEG, and glycerine. The carrier coating materials play an important role in improving the solubility of the drug. The dissolution rate of the drug was increased by using propylene glycol as non-volatile solvent at 20:1 ratio of carrier to coating material. Solid dispersion by kneading method were another attempt to improve solubility the various carrier materials used were PVP K 30, PEG 6000 and mannitol, these carriers are used in various ratios to improve its solubility. The dissolution rate of drug using solid dispersion kneading method with mannitol was increased at 1:3 ratio. The DSC and FTIR studies revealed no drug excipients interactions, whereas XRD revealed the reduced crystalinity of drug, which showed enhanced solubility. From the results it was concluded that the liquisolid compacts enhanced the solubility of valsartan in comparison to traditional solid dispersion method.DOI: http://dx.doi.org/10.3329/sjps.v4i2.10441  S. J. Pharm. Sci. 4(2) 2011: 58-62


Author(s):  
E. Karavas ◽  
E. Georgarakis ◽  
D. Bikiaris ◽  
T. Thomas ◽  
V. Katsos ◽  
...  

2009 ◽  
Vol 26 (11) ◽  
pp. 2523-2534 ◽  
Author(s):  
Alfred C. F. Rumondor ◽  
Igor Ivanisevic ◽  
Simon Bates ◽  
David E. Alonzo ◽  
Lynne S. Taylor

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 407
Author(s):  
Sooho Yeo ◽  
Jieun An ◽  
Changhee Park ◽  
Dohyun Kim ◽  
Jaehwi Lee

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.


Sign in / Sign up

Export Citation Format

Share Document