scholarly journals Design and Characterization of Phosphatidylcholine-Based Solid Dispersions of Aprepitant for Enhanced Solubility and Dissolution

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 407
Author(s):  
Sooho Yeo ◽  
Jieun An ◽  
Changhee Park ◽  
Dohyun Kim ◽  
Jaehwi Lee

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.

2021 ◽  
Vol 20 (2) ◽  
pp. 149-158
Author(s):  
Shimul Halder ◽  
MAK Azad ◽  
Hrishik Iqbal ◽  
Madhabi Lata Shuma ◽  
Eva Rahman Kabir

Bioavailability of a poorly water-soluble drug, e.g., widely used anthelmintic drug Albendazole (ABZ), is very low and thus, to obtain an optimized therapeutic efficacy, the aqueous solubility of such drugs needs to be enhanced. The objective of this study was to develop an effective high drug-loaded solid dispersion (SD) of ABZ with two biocompatible drug carriers, namely Soluplus® and Ludiflash® to improve its physicochemical characteristics. Equilibrium solubility study was performed to choose the optimum polymer ratio among the formulations and it showed up to 50-fold enhanced solubility compared to crystalline ABZ in water. X-Ray Powder Diffraction (XRPD) and Differential Scanning Calorimetry (DSC) studies of SD-ABZ showed reduced crystallinity of ABZ in the SD. The polymeric carriers, notably Soluplus®, are thought to play a key role in the reduction of crystallinity and molecular polydispersity of ABZ. The dissolution studies in water showed improved dissolution of SD-ABZ compared to crystalline ABZ, with a quick onset of drug release followed by gradual dissolution. However, due to high drug-loading and retention of crystalline ABZ in the sample, the dissolution behavior was not as expected, and may require further studies to optimize the SD-ABZ formulation. Dhaka Univ. J. Pharm. Sci. 20(2): 149-158, 2021 (December)


Author(s):  
S. Kaushik ◽  
Kamla Pathak

<p><strong>Objective: </strong>The aim of the present study was to develop and evaluate the monolithic osmotic tablet (MOT) composed of the solid dispersion of ketoprofen (KETO), a poorly water-soluble drug. Solid dispersion technique is generally used for immediate release, as this maximizes the amount of drug absorbed. Sustained release may be obtained by combining solid dispersion technique with MOT so as to increase the therapy efficacy and patient compliance.</p><p><strong>Methods: </strong>Solid dispersion of KETO was prepared by using solvent melt method with polyethylene glycol (PEG) 6000, a hydrophilic carrier. The ratio of KETO to PEG 6000 were 1:1, 1:3 and 1:5 (%w/w). These solid dispersions were characterized by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD) to ascertain whether there were any physicochemical interactions between drug and carrier.</p><p>The tablet core was prepared by using Polyox N80 (a suspending agent), sodium chloride (an osmotic agent), a solid dispersion consisting of PEG 6000 and KETO followed by a coating of cellulose acetate to make the monolithic osmotic tablet.</p><p><strong>Results: </strong>The results of DSC and PXRD indicated that the drug was in the amorphous state in solid dispersion when PEG 6000 was used as a carrier. The dissolution rate of the solid dispersion was much faster than those for the corresponding physical mixture and pure drug. The optimized MOT formulations were able to deliver KETO at the constant zero order release, above 95% <em>in vitro</em>, independent to environmental media and stirring rate. The release rate of KETO in the MOT is controlled by osmotic pressure, suspending agent and drug solubility in solid dispersion.</p><p><strong>Conclusion: </strong>The monolithic osmotic tablet containing solid dispersion has great potential in the controlled delivery of ketoprofen, a water-insoluble drug.</p><p><strong>Keywords: </strong>Ketoprofen, Monolithic osmotic tablet, Solid dispersion, Water insoluble</p>


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 54-59
Author(s):  
S. S Shelake ◽  
◽  
R. G Gaikwad ◽  
S Patil ◽  
F. I. Mevekari ◽  
...  

Crystalline state compounds are typically dissolution rate limited and dissolution rate is directly proportional to the solubility for BCS class II or class IV compounds. Solid dispersions are one of the most promising strategies to improve the oral bioavailability poorly water soluble drugs. The purpose of this study was to increase solubility of carvedilol by solid dispersion (SDs) technique with Poloxamer (PXM) 407 in aqueous media. The carvedilol- PXM 407 solid dispersion was prepared by solvent evaporation, kneading and melting method. It was characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and in vitro dissolution studies. The prepared solid dispersion were found to have higher dissolution rates as compared to intact carvedilol. During formulation of solid dispersion crystalline to amorphous transition has been observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ali Farmoudeh ◽  
Anahita Rezaeiroshan ◽  
Mohammadreza Abbaspour ◽  
Ali Nokhodchi ◽  
Pedram Ebrahimnejad

Deferasirox (DFX) is an oral iron-chelating agent and classified into class II of the Biopharmaceutics Classification System. Low bioavailability of the drug due to insufficient solubility in physiological fluids is the main drawback of DFX. The idea of the current study was to explore the potential of solid dispersion (SD) as an effective method to improve the dissolution rate of DFX in pellets. The SDs were made by the solvent evaporation technique using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K25 with different drug-to-carrier ratios. Then, the dispersion was milled and mixed with other components and the mixture layered on sugar-based cores by pan coating technique. The pellets were evaluated in terms of size distribution, morphology (SEM), and dissolution behaviour. Drug-polymer interactions were studied using differential scanning calorimetry (DSC), X-ray diffraction study (XRD), and Fourier transformation infrared (FTIR) spectroscopy. The pellets coated with SD showed a remarkable rise in the solubility of DFX than that of free drug-loaded pellets. The dispersion with PVP K25 showed a faster dissolution rate as compared to other mixtures. The DSC and XRD analysis indicated that the drug was in the amorphous state when dispersed in the polymer. The FTIR studies demonstrated any ruled out interaction between drug and polymer. The SEM showed smoothness on the surface of the pellets. It is resolved that the SD method considerably enriched the dissolution rate of DFX in pellets, which can also be utilized for other poorly water-soluble drugs.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Meka Lingam ◽  
Vobalaboina Venkateswarlu

The low aqueous solubility of celecoxib (CB) and thus its low bioavailability is a problem.    Thus, it is suggested to improve the solubility using cosolvency and solid dispersions techniques. Pure CB has solubility of 6.26±0.23µg/ml in water but increased solubility of CB was observed with increasing concentration of cosolvents like PEG 400, ethanol and propylene glycol. Highest solubility (791.06±15.57mg/ml) was observed with cosolvency technique containing the mixture of composition 10:80:10%v/v of water: PEG 400: ethanol. SDs with different polymers like PVP, PEG were prepared and subjected to physicochemical characterization using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), solubility and dissolution studies. These studies reveals that CB exists mainly in amorphous form in prepared solid dispersions of PVP, PEG4000 and PEG6000 further it can also be confirmed by solubility and dissolution rate studies. Solid dispersions of PV5 and PV9 have shown highest saturation solubility and dissolution rate


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 13-19
Author(s):  
R. O Sonawane ◽  
◽  
S. Nayak ◽  
M. D. Chaudhari ◽  
V. V. Pande

The poorly water soluble drugs tend to have low bioavailability and this can be improved by several methods. Solid dispersion is a promising formulation approach to improve solubility and dissolution and ultimately oral bioavailability of these drugs. The aim of this study was to prepare and characterize solid dispersion of anti-diabetic glimepiride, a BCS class II drug, with the hydrophilic carrier PVP K30 by solvent evaporation and microwave induced fusion methods. Scanning electron microscopy (SEM), X–ray powder diffractometry (XRD) and differential scanning calorimetric (DSC) were used to evaluate the physical state of the drug. The solid dispersions were also evaluated for drug content, solubility and dissolution studies. Solid dispersions prepared by solvent evaporation method were showed maximum enhancement of solubility and dissolution in comparison to that prepared by other method.


Author(s):  
A. N. Patil ◽  
D. M. Shinkar ◽  
R. B. Saudagar

Enhancement of solubility, dissolution rate and bioavailability of the drug is a very challenging task in drug development, nearly 40% of the new chemical entities currently being discovered are poorly water soluble drugs. The solubility behaviour of the drugs remains one of the most challenging aspects in formulation development. This results in important products not reaching the market or not achieving their full potential. Solid dispersion is one of the techniques adopted for the formulation of such drugs and various methods are used for the preparation of solid dispersion. Solid dispersion is generally prepared with a drug which is having poor aqueous solubility and hydrophilic carrier. This article review various methods and concept of solid dispersion, criteria for drug selection, advantage and disadvantage, characterization, and application.


Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1679
Author(s):  
Thao T.D. Tran ◽  
Phuong H.L. Tran

In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document