scholarly journals Architecture of promoters of house-keeping genes in polytene chromosome interbands of drosophila melanogaster

2019 ◽  
Vol 485 (1) ◽  
pp. 104-109
Author(s):  
T. Yu. Zykova ◽  
V. G. Levitsky ◽  
I. F. Zhimulev

This is the first study to investigate the molecular-genetic organization of polytene chromosome interbands located on both molecular and cytological maps of Drosophila genome. The majority of the studied interbands contained one gene with a single transcription initiation site; the remaining interbands contained one gene with several alternative promoters, two or more unidirectional genes, and “head-to-head” arranged genes. In addition, intricately arranged interbands containing three or more genes in both unidirectional and bidirectional orientation were found. Insulator proteins, ORC, P-insertions, DNase I hypersensitive sites, and other open chromatin structures were situated in the promoter region of the genes located in the interbands. This area is critical for the formation of the interband, an open chromatin region in which gene transcription and replication are combined.

1995 ◽  
Vol 310 (3) ◽  
pp. 757-763 ◽  
Author(s):  
A Magyar ◽  
E Bakos ◽  
A Váradi

A 14 kb genomic clone covering the organellar-type Ca(2+)-ATPase gene of Drosophila melanogaster has been isolated and characterized. The sequence of a 7132 bp region extending from 1.1 kb 5′ upstream of the initiation ATG codon over the polyadenylation signal at the 3′ end has been determined. The gene consists of nine exons including one with an exceptional size of 2172 bp representing 72% of the protein coding region. Introns are relatively small (< 100 bp) except for the 3′ intron which has a size of 2239 bp, an exceptionally large size among Drosophila introns. Five of the introns are in the same positions in Drosophila, Artemia and rabbit SERCA1 Ca(2+)-ATPase genes. There is only one organellar-type Ca(2+)-ATPase gene in the Drosophila genome, as was shown by Southern-blot analysis [Váradi, Gilmore-Hebert and Benz (1989) FEBS Lett. 258, 203-207] and by chromosomal localization [Magyar and Váradi (1990) Biochem. Biophys. Res. Commun. 173, 872-877]. Primer extension and S1-nuclease assays revealed a potential transcription initiation site 876 bp upstream of the translation initiation ATG with a TATA-box 23 bp upstream of this site. Analysis of the 5′ region of the Drosophila organellar-type Ca(2+)-ATPase gene suggests the presence of potential recognition sequences of various muscle-specific transcription factors and shows a region with remarkable similarity to that in the rabbit SERCA2 gene. The tissue distribution of expression of the organellar-type Ca(2+)-ATPase gene has been studied by in situ RNA-RNA hybridization on microscopic sections. A low mRNA abundance can be detected in each tissue of adult flies, suggesting a housekeeping function for the gene. On the other hand a pronounced tissue specificity of expression has also been found as the organellar-type Ca(2+)-ATPase is expressed at a very high level in cell bodies of the central nervous system and in various muscles.


1991 ◽  
Vol 11 (9) ◽  
pp. 4314-4323 ◽  
Author(s):  
J Hapgood ◽  
S Cuthill ◽  
P Söderkvist ◽  
A Wilhelmsson ◽  
I Pongratz ◽  
...  

Dioxin stimulates transcription from the cytochrome P-450IA1 promoter by interaction with the intracellular dioxin receptor. Upon binding of ligand, the receptor is converted to a form which specifically interacts in vitro with two dioxin-responsive positive control elements located in close proximity to each other about 1 kb upstream of the rat cytochrome P-450IA1 gene transcription start point. In rat liver, the cytochrome P-450IA1 gene is marked at the chromatin level by two DNase I-hypersensitive sites that map to the location of the response elements and exist prior to induction of transcription by the dioxin receptor ligand beta-naphthoflavone. In addition, a DNase I-hypersensitive site is detected near the transcription initiation site and is altered in nuclease sensitivity by induction. The presence of the constitutive DNase I-hypersensitive sites at the dioxin response elements correlates with the presence of a constitutive, labile factor which specifically recognizes these elements in vitro. This factor appears to be distinct from the dioxin receptor, which is observed only in nuclear extract from treated cells. In conclusion, these data suggest that a certain protein-DNA architecture may be maintained at the response elements at different stages of gene expression.


1991 ◽  
Vol 11 (9) ◽  
pp. 4314-4323
Author(s):  
J Hapgood ◽  
S Cuthill ◽  
P Söderkvist ◽  
A Wilhelmsson ◽  
I Pongratz ◽  
...  

Dioxin stimulates transcription from the cytochrome P-450IA1 promoter by interaction with the intracellular dioxin receptor. Upon binding of ligand, the receptor is converted to a form which specifically interacts in vitro with two dioxin-responsive positive control elements located in close proximity to each other about 1 kb upstream of the rat cytochrome P-450IA1 gene transcription start point. In rat liver, the cytochrome P-450IA1 gene is marked at the chromatin level by two DNase I-hypersensitive sites that map to the location of the response elements and exist prior to induction of transcription by the dioxin receptor ligand beta-naphthoflavone. In addition, a DNase I-hypersensitive site is detected near the transcription initiation site and is altered in nuclease sensitivity by induction. The presence of the constitutive DNase I-hypersensitive sites at the dioxin response elements correlates with the presence of a constitutive, labile factor which specifically recognizes these elements in vitro. This factor appears to be distinct from the dioxin receptor, which is observed only in nuclear extract from treated cells. In conclusion, these data suggest that a certain protein-DNA architecture may be maintained at the response elements at different stages of gene expression.


2008 ◽  
Vol 28 (24) ◽  
pp. 7504-7513 ◽  
Author(s):  
Maxime Tremblay ◽  
Yumin Teng ◽  
Michel Paquette ◽  
Raymond Waters ◽  
Antonio Conconi

ABSTRACT Nucleotide excision repair (NER) removes a plethora of DNA lesions. It is performed by a large multisubunit protein complex that finds and repairs damaged DNA in different chromatin contexts and nuclear domains. The nucleolus is the most transcriptionally active domain, and in yeast, transcription-coupled NER occurs in RNA polymerase I-transcribed genes (rDNA). Here we have analyzed the roles of two members of the xeroderma pigmentosum group C family of proteins, Rad4p and Rad34p, during NER in the active and inactive rDNA. We report that Rad4p is essential for repair in the intergenic spacer, the inactive rDNA coding region, and for strand-specific repair at the transcription initiation site, whereas Rad34p is not. Rad34p is necessary for transcription-coupled NER that starts about 40 nucleotides downstream of the transcription initiation site of the active rDNA, whereas Rad4p is not. Thus, although Rad4p and Rad34p share sequence homology, their roles in NER in the rDNA locus are almost entirely distinct and complementary. These results provide evidences that transcription-coupled NER and global genome NER participate in the removal of UV-induced DNA lesions from the transcribed strand of active rDNA. Furthermore, nonnucleosome rDNA is repaired faster than nucleosome rDNA, indicating that an open chromatin structure facilitates NER in vivo.


1994 ◽  
Vol 14 (10) ◽  
pp. 6797-6808
Author(s):  
M Salminen ◽  
P Maire ◽  
J P Concordet ◽  
C Moch ◽  
A Porteu ◽  
...  

The expression of the human aldolase A gene is controlled by three alternative promoters. In transgenic mice, pN and pH are active in all tissues whereas pM is activated specifically in adult muscles composed mainly of fast, glycolytic fibers. To detect potential regulatory regions involved in the fast-muscle-specific activation of pM, we analyzed DNase I hypersensitivity in a 4.3-kbp fragment from the 5' end of the human aldolase A gene. Five hypersensitive sites were located near the transcription initiation site of each promoter in those transgenic-mouse tissues in which the corresponding promoter was active. Only one muscle-specific hypersensitive site was detected, mapping near pM. To functionally delimit the elements required for muscle-specific activity of pM, we performed a deletion analysis of the aldolase A 5' region in transgenic mice. Our results show that a 280-bp fragment containing 235 bp of pM proximal upstream sequences together with the noncoding M exon is sufficient for tissue-specific expression of pM. When a putative MEF-2-binding site residing in this proximal pM region is mutated, pM is still active and no change in its tissue specificity is detected. Furthermore, we observed a modulation of pM activity by elements lying further upstream and downstream from pM. Interestingly, pM was expressed in a tissue-specific way in all transgenic mice in which the 280-bp region was present (32 lines and six founder animals). This observation led us to suggest that the proximal pM region contains elements that are able to override to some extent the effects of the surrounding chromatin.


1994 ◽  
Vol 14 (10) ◽  
pp. 6797-6808 ◽  
Author(s):  
M Salminen ◽  
P Maire ◽  
J P Concordet ◽  
C Moch ◽  
A Porteu ◽  
...  

The expression of the human aldolase A gene is controlled by three alternative promoters. In transgenic mice, pN and pH are active in all tissues whereas pM is activated specifically in adult muscles composed mainly of fast, glycolytic fibers. To detect potential regulatory regions involved in the fast-muscle-specific activation of pM, we analyzed DNase I hypersensitivity in a 4.3-kbp fragment from the 5' end of the human aldolase A gene. Five hypersensitive sites were located near the transcription initiation site of each promoter in those transgenic-mouse tissues in which the corresponding promoter was active. Only one muscle-specific hypersensitive site was detected, mapping near pM. To functionally delimit the elements required for muscle-specific activity of pM, we performed a deletion analysis of the aldolase A 5' region in transgenic mice. Our results show that a 280-bp fragment containing 235 bp of pM proximal upstream sequences together with the noncoding M exon is sufficient for tissue-specific expression of pM. When a putative MEF-2-binding site residing in this proximal pM region is mutated, pM is still active and no change in its tissue specificity is detected. Furthermore, we observed a modulation of pM activity by elements lying further upstream and downstream from pM. Interestingly, pM was expressed in a tissue-specific way in all transgenic mice in which the 280-bp region was present (32 lines and six founder animals). This observation led us to suggest that the proximal pM region contains elements that are able to override to some extent the effects of the surrounding chromatin.


1998 ◽  
Vol 44 (12) ◽  
pp. 1186-1192
Author(s):  
Guy Daxhelet ◽  
Philippe Gilot ◽  
Etienne Nyssen ◽  
Philippe Hoet

pGR71, a composite of plasmids pUB110 and pBR322, replicates in Escherichia coli and in Bacillus subtilis. It carries the chloramphenicol resistance gene (cat) from Tn9, which is not transcribed in either host by lack of a promoter. The cat gene is preceded by a Shine-Dalgarno sequence functional in E. coli but not in B. subtilis. Deleted pGR71 plasmids were obtained in B. subtilis when cloning foreign viral DNA upstream of this cat sequence, as well as by BAL31 exonuclease deletions extending upstream from the cat into the pUB110 moiety. These mutant plasmids expressed chloramphenicol acetyltransferase (CAT), conferring on B. subtilis resistance to high chloramphenicol concentrations. CAT expression peaked at the early postexponential phase of B. subtilis growth. The transcription initiation site of cat, determined by primer extension, was located downstream of a putative promoter sequence within the pUB110 moiety. N-terminal amino acid sequencing showed that native CAT was produced by these mutant plasmids. The cat ribosome-binding site, functional in E. coli, was repositioned within the pUB110 moiety and had consequently an extended homology with B. subtilis 16S rRNA, explaining the production of native enzyme.Key words: chloramphenicol acetyltransferase, Bacillus subtilis, postexponential gene expression, plasmid pUB110, ribosome-binding site, transcriptional promoter.


1991 ◽  
Vol 11 (1) ◽  
pp. 533-543
Author(s):  
R M Mulligan ◽  
P Leon ◽  
V Walbot

Lysed maize mitochondria synthesize RNA in the presence of radioactive nucleoside triphosphates, and this assay was utilized to compare the rates of transcription of seven genes. The rates of incorporation varied over a 14-fold range, with the following rank order: 18S rRNA greater than 26S rRNA greater than atp1 greater than atp6 greater than atp9 greater than cob greater than cox3. The products of run-on transcription hybridized specifically to known transcribed regions and selectively to the antisense DNA strand; thus, the isolated run-on transcription system appears to be an accurate representation of endogenous transcription. Although there were small differences in gene copy abundance, these differences cannot account for the differences in apparent transcription rates; we conclude that promoter strength is the main determinant. Among the protein coding genes, incorporation was greatest for atp1. The most active transcription initiation site of this gene was characterized by hybridization with in vitro-capped RNA and by primer extension analyses. The DNA sequences at this and other transcription initiation sites that we have previously mapped were analyzed with respect to the apparent promoter strengths. We propose that two short sequence elements just upstream of initiation sites form at least a portion of the sequence requirements for a maize mitochondrial promoter. In addition to modulation at the level of transcription, steady-state abundance of protein-coding mRNAs varied over a 20-fold range and did not correlate with transcriptional activity. These observations suggest that posttranscriptional processes are important in the modulation of mRNA abundance.


Sign in / Sign up

Export Citation Format

Share Document