scholarly journals Mesoarchean silicic volcanics of the Kursk block, Voronezh crystalline massif: composition, age and correlation with the Ukrainian shield

2019 ◽  
Vol 486 (6) ◽  
pp. 718-722
Author(s):  
K. A. Savko ◽  
A. V. Samsonov ◽  
A. N. Larionov

Rhyolites and basite rocks are present in the Archaean greenstone belts of the Kursk Domain (KD) of the East Sarmatia. The rhyolite age is 3122 ± 9 Ma (zircons, SIMS). A positive εNd (3122) = + 0.9 for rhyolites and their Sm-Nd model age ТNd (DM) = 3300 Ma as well as the age of the inherited zircon (3250 Ma) testifies to the participation of the more ancient crust component in the formation of rhyolite magmas. In geochemistry, rhyolites are very close to the TTG of the KD with an age 2.96-3.03 Ga. In the Middle Dnieper granite - greenstone area there are rhyolites and dacites with an age of 3.12 Ga with εNd (T) = + 0.6 - (+1.2) and very close geochemical characteristics. Thus, the hypothesis of a common geological history of the eastern part of Ukrainian Shield and KD in Mesoarchean is confirmed.

2021 ◽  
pp. 35-47
Author(s):  
G.V. Artemenko ◽  
L.V. Shumlyanskyy

A large anticline structure that includes the West Azov and Remivka blocks occurs in the western part of the Azov Domain of the Ukrainian Shield. These blocks are composed of rocks of the Mesoarchean (3.2-3.0 Ga) granite-greenstone association and relics of an older basement. The anticline is divided into two parts by the Bilotserkivka structure of sub-latitudinal strike; the northern part includes the Huliaipole and Remivka blocks, and the southern part is comprised of the Saltycha anticline. The Archean plagiogranitoids of the West Azov underwent intense dislocation metamorphism during the Paleoproterozoic. In many areas they were transformed into plagioclase gneisses that were attributed to the Paleoarchean “Kainkulak thickness” of the Azov Series. Detailed geological-structural and geochronological studies are required to define the age of these gneisses.We have chosen two areas for our studies: the Lantsevo anticline within the Bilotserkivka structure, and the Ivanivka area in the eastern part of the Saltycha anticline. The Bilotserkivka structure is composed of rocks of the Central Azov Series and highly deformed Archean formations. We have dated plagiogneisses of the Lantsevo anticline. These rocks contain large relics of metamorphic rocks of unknown age, including two-pyroxene and pyroxene crystalline schists, and pyroxenemagnetite quartzites (BIF). In terms of chemical composition, two-pyroxene crystalline schists correspond to tholeiitic basalts and basaltic komatiites. Ferruginous-siliceous rocks belong to the Algoma type typical for the Archean greenstone belts. Biotite gneisses are similar to the medium-pressure tonalite-trondhjemite-granodiorite rocks (TTGs). The U-Pb age of zircon crystallization from biotite gneisses is 3299 ± 11 Ma. At 30 km in the western part of the Bilotserkivka structure, we have previously identified quartz diorites having an age of 3297 ± 22 Ma. In terms of geochemical characteristics, they correspond to low-pressure TTGs. These data show that the Bilotserkivka structure is a block representing an ancient basement. In the Ivanivka area in the eastern part of the Saltycha anticline, the strike of the Archean rocks was reorientated from northwestern to latitudinal. The studied dislocated trondhjemites of the Ivanivka area correspond to TTGs in terms of the geochemical characteristics. They contain numerous relics of highly altered amphibolites. The U-Pb age of zircon crystallization from trondhjemite is 3013 ± 15 Ma. These rocks are of the same age as TTGs of the Shevchenko Complex cutting through the sedimentary-volcanogenic rocks of the greenstone structures of the Azov Domain. They share age and geochemical characteristics with biotite and amphibole-biotite gneisses of the “Kainkulak thickness” in Zrazkove village located at the Mokra Konka river (3.1-3.0 Ga) and with biotite gneisses in the lower reaches of the Kainkulak river (2.92 Ga). Thus, gneisses of the “Kainkulak thickness” in fact represent the Mesoarchean TTGs of the Shevchenko Complex, which were transformed in the Paleoproterozoic time due to the dislocation metamorphism. Late Paleoarchean (3.3 Ga) tonalites are known in the West Azov and the KMA domains; they probably also occur in the basement of the Middle Dnieper domains, where detrital zircons of this age have been reported. These data allow us to conclude the existence of a large Late Paleoarchean (3.3 Ga) protocraton, in which the Mesoarchean (3.2-3.0 Ga) greenstone belts and TTGs of the eastern part of the Ukrainian Shield and the KMA Domain were formed.


2017 ◽  
Vol 59 (8) ◽  
pp. 663-676 ◽  
Author(s):  
S. B. Lobach-Zhuchenko ◽  
T. V. Kaulina ◽  
K. I. Lokhov ◽  
Yu. S. Egorova ◽  
S. G. Skublov ◽  
...  

Author(s):  
G.V. Artemenko ◽  
L.V. Shumlyanskyy

A large anticline structure occurs in the western part of the Azov Domain of the Ukrainian Shield. It is composed of rocks of the Mesoarchean (3.2-3.0 Ga) granite-greenstone association and relics of an older basement. The anticline is divided into two parts by the Bilotserkivka structure of sub-latitudinal strike. The northern part includes the Huliaipole and Remivka blocks, and the southern part comprises the Saltycha anticline. The U-Pb age of plagiogneisses of the Lantsevo anticline of the Bilotserkivka structure is 3299 ± 11 Ma. In terms of geochemical characteristics, they correspond to TTGs. In the western part of the Bilotserkivka structure, we previously identified quartz diorites having an age of 3297 ± 22 Ma. These data show that the Bilotserkivka structure represents an ancient basement. Dislocated trondhjemites were studied in the Ivanivka area at the eastern part of the Saltycha anticline. They contain numerous relics of heavily altered amphibolites. The U-Pb age of zircons from trondhjemite is 3013 ± 15 Ma. These rocks are of the same age as TTGs of the Shevchenko Complex cutting through the sedimentary- volcanogenic rocks of the greenstone structures of the Azov Domain. They share age and geochemical characteristics with biotite and amphibole-biotite gneisses of the “Kainkulak beds” in the Zrazkove village located at the Mokra Konka river (3.1-3.0 Ga) and with biotite gneisses in the lower reaches of the Kainkulak river (2.92 Ga). Thus, gneisses of the “Kainkulak beds” actually represent the Mesoarchean TTGs of the Shevchenko Complex, transformed in the Paleoproterozoic time due to the dislocation metamorphism. The late Paleoarchean (3.3 Ga) tonalites are known in the West Azov and KMA domains; they probably also occur in the basement of the Middle Dnieper domains, where detrital zircons of this age have been reported. These data allow us to assume the existence of a large Late Paleoarchean (3.3 Ga) protocraton, in which the Mesoarchean (3.2-3.0 Ga) greenstone belts and TTGs of the eastern part of the Ukrainian Shield and the KMA Domain were formed.


2000 ◽  
Vol 30 (3) ◽  
pp. 474-476 ◽  
Author(s):  
LUIZ JOSÉ TOMAZELLI ◽  
SÉRGIO REBELLO DILLENBURG ◽  
JORGE ALBERTO VILLWOCK

2018 ◽  
Vol 938 (8) ◽  
pp. 38-43
Author(s):  
S.A. Kotler ◽  
I.D. Zolnikov ◽  
D.V. Pchelnikov

The types of geological and geomorphological structure of the Katun valley are distinguished in the work. For this, a method of geoinformation mapping using morphometric indicators of the valley’s width and meandering of the channel was developed. The morphometric parameter of the valley’s width was calculated as the total area of terraces. As the morphometric parameters of the channel’s meandering, the angles of the river segments’ deviation relative to each other were calculated. Conjugated analysis of these morphometric indicators enabled identifying 18 morphotypes. These morphotypes according to the geological and geomorphological structure of the valley were combined into 4 classes. Separation of the Katun valley in certain classes and morphotypes is due to the different geological history of these sites during the Quaternary period. The most important reasons predetermining the modern variety of geological and geomorphological types of the valley are neotectonic movements and exogenous phenomena (glaciers, dam lakes, landslides, etc.) naturally localized in the space from the upstream of the river to its exit into the foothills. The developed method can be applied for quantitative morphometric classification of the mountain rivers’ valleys in other regions.


2016 ◽  
Author(s):  
Celine Martin ◽  
◽  
George E. Harlow ◽  
George E. Harlow ◽  
George E. Harlow ◽  
...  

2020 ◽  
Vol 190 (2) ◽  
pp. 709-736
Author(s):  
Jae-Cheon Sohn ◽  
Shigeki Kobayashi ◽  
Yutaka Yoshiyasu

Abstract A northward trans-Wallacean radiation is demonstrated for Chrysorthenches, a member of the Orthenches group. Here we review Chrysorthenches and allied genera resulting in a generic transfer of Diathryptica callibrya to Chrysorthenches and two new congeners: C. muraseaeSohn & Kobayashisp. nov. from Japan and C. smaragdinaSohnsp. nov. from Thailand. We review morphological characters of Chrysorthenches and allied genera, and find polyphyly of Diathryptica and the association of the Orthenches-group with Glyphipterigidae. These findings were supported in a maximum likelihood phylogeny of DNA barcodes from ten yponomeutoids. We analysed 30 morphological characters for 12 species of Chrysorthenches, plus one outgroup, via a cladistic approach. The resulting cladogram redefined two pre-existing Chrysorthenches species-groups and identified one novel lineage: the C. callibrya species-group. We review the host associations between Chrysorthenches and Podocarpaceae, based on mapping the working phylogenies. Our review suggests that ancestral Chrysorthenches colonized Podocarpus and later shifted to other podocarp genera. Biogeographical patterns of Chrysorthenches show that they evolved long after the Podocarpaceae radiation. Disjunctive trans-Wallacean distribution of the C. callibrya species-group is possibly related to the tracking of their host-plants and the complicated geological history of the island-arc system connecting Australia and East Asia.


The Lake Rudolf Rift Valley Expedition was designed to carry out many different lines of investigation in the Lake Rudolf Basin. One of the chief of these was a study of the geological history of that part of the East African Rift Valley. The expedition was assisted financially by The Royal Society, The Geological Society of London, The Royal Geographical Society, The Percy Sladen Trustees and the Geographical and Geological Sections of the British Association. A general description of the activities of the Expedition was given in a paper read before the Royal Geographical Society (Fuchs 1935). Owing to the tragic loss of two members of the expedition, Dr W. S. Dyson and Mr W. R. H. Martin, two fruitless months were spent searching for them. Consequently a great amount of the work planned for the east side of the lake had to be abandoned. Nevertheless, the considerable distance travelled within the 50,000 sq. miles of the Rudolf Basin has enabled me to make out the chief events of its geological history. I am very much indebted to all those who assisted us in the field and at home, in particular to the Kenya Government, the Officers of the King’s African Rifles, and Mr H. L. Sikes of the Public Works Department; I would also like to thank Mr A. M. Champion, Provincial Commissioner of Turkana, who wholeheartedly assisted us in every way possible both in the field and at home, for he has placed at my disposal his own excellent topographical maps and his extensive observations on the geology of the area. I am also deeply indebted to Professor O. T. Jones, Mr Henry Woods and Mr W. Campbell Smith for their criticisms. Mr Campbell Smith has also given me provisional identifications of the rocks.


1918 ◽  
Vol 37 ◽  
pp. 327-349 ◽  
Author(s):  
B. N. Peach ◽  
J. Horne ◽  
E. T. Newton

A characteristic feature of the plateau of Cambrian Limestone in the neighbourhood of Inchnadamff is the occurrence in it of swallow-holes, caves, and subterranean channels which are intimately associated with the geological history of the region. The valley of Allt nan Uamh (Burn of the Caves), locally known as the Coldstream Burn, furnishes striking examples of these phenomena. One of the caves in this valley yielded an interesting succession of deposits, from which were collected abundant remains of mammals and birds. The discovery of bones of the Northern Lynx, the Arctic Lemming, and the Northern Vole among these relics, and the collateral evidence of the materials forming some of these layers, seem to link the early history of this bone-cave with late glacial time, or at least with a period before the final disappearance of local glaciers in that region.


Sign in / Sign up

Export Citation Format

Share Document