scholarly journals About the features of hypersonic flow past a yawed plate

2019 ◽  
Vol 487 (1) ◽  
pp. 24-27
Author(s):  
G. N. Dudin ◽  
V. Ya. Neyland

The flow around the yawed plate in the regime of strong interaction is considered in the case when the pressure at its trailing edge is not constant, but changes along the transverse coordinate. It is shown that in the case of large transverse gradients of the induced pressure, the type of expansions of flow functions in the vicinity of the leading edge changes significantly and the third term of the expansions should be taken into account.

1979 ◽  
Vol 95 (1) ◽  
pp. 177-187 ◽  
Author(s):  
S. L. Gai

An experimental study of the flow past a thin finite length plate in a supersonic low density stream is reported. The paper discusses the corrections that are necessary for surface pressures measured under rarefied conditions. It is shown that the recent method of ‘orifice’ corrections due to Harbour & Bienkowski is versatile and reliable to use for both cold wall and insulated wall measurements. For the conditions of the experiment, the flow over the plate was found to be dominated by both leading-edge and trailing-edge interactions.


2021 ◽  
Vol 929 ◽  
Author(s):  
A. Chiarini ◽  
M. Quadrio ◽  
F. Auteri

The primary instability of the flow past rectangular cylinders is studied to comprehensively describe the influence of the aspect ratio $AR$ and of rounding the leading- and/or trailing-edge corners. Aspect ratios ranging between $0.25$ and $30$ are considered. We show that the critical Reynolds number ( $\textit {Re}_c$ ) corresponding to the primary instability increases with the aspect ratio, starting from $\textit {Re}_c \approx 34.8$ for $AR=0.25$ to a value of $\textit {Re}_c \approx 140$ for $AR = 30$ . The unstable mode and its dependence on the aspect ratio are described. We find that positioning a small circular cylinder in the flow modifies the instability in a way strongly depending on the aspect ratio. The rounded corners affect the primary instability in a way that depends on both the aspect ratio and the curvature radius. For small $AR$ , rounding the leading-edge corners has always a stabilising effect, whereas rounding the trailing-edge corners is destabilising, although for large curvature radii only. For intermediate $AR$ , instead, rounding the leading-edge corners has a stabilising effect limited to small curvature radii only, while for $AR \geqslant 5$ it has always a destabilising effect. In contrast, for $AR \geqslant 2$ rounding the trailing-edge corners consistently increases $\textit {Re}_c$ . Interestingly, when all the corners are rounded, the flow becomes more stable, at all aspect ratios. An explanation for the stabilising and destabilising effect of the rounded corners is provided.


1981 ◽  
Vol 104 ◽  
pp. 217-246 ◽  
Author(s):  
M. E. Goldstein

It is now generally agreed that an external disturbance field, such as an incident acoustic wave, can effectively couple to instabilities of a flow past a trailing edge. One purpose of the present paper is to show that there are situations where a similar coupling can occur at a leading edge. The process is analysed and the effects of experimentally controllable parameters are assessed. It is important to account for such phenomena when evaluating the effect of external disturbances on transition.


2019 ◽  
Vol 50 (5) ◽  
pp. 461-481
Author(s):  
Sergei Vasilyevich Aleksandrov ◽  
Evgeniya Andreevna Aleksandrova ◽  
Volf Ya. Borovoy ◽  
Andrey Vyacheslavovich Gubernatenko ◽  
Vladimir Evguenyevich Mosharov ◽  
...  

1973 ◽  
Vol 24 (2) ◽  
pp. 120-128 ◽  
Author(s):  
J E Barsby

SummarySolutions to the problem of separated flow past slender delta wings for moderate values of a suitably defined incidence parameter have been calculated by Smith, using a vortex sheet model. By increasing the accuracy of the finite-difference technique, and by replacing Smith’s original nested iteration procedure, to solve the non-linear simultaneous equations that arise, by a Newton’s method, it is possible to extend the range of the incidence parameter over which solutions can be obtained. Furthermore for sufficiently small values of the incidence parameter, new and unexpected results in the form of vortex systems that originate inboard from the leading edge have been discovered. These new solutions are the only solutions, to the author’s knowledge, of a vortex sheet leaving a smooth surface.Interest has centred upon the shape of the finite vortex sheet, the position of the isolated vortex, and the lift, and variations of these quantities are shown as functions of the incidence parameter. Although no experimental evidence is available, comparisons are made with the simpler Brown and Michael model in which all the vorticity is assumed to be concentrated onto an isolated line vortex. Agreement between these two models becomes very close as the value of the incidence parameter is reduced.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


Sign in / Sign up

Export Citation Format

Share Document