Distribution of Rare Metals and Rare-Earth Elements in Brown Coal Deposits Of the Upper and Medium Priamurie

2018 ◽  
Vol 483 (6) ◽  
pp. 658-661
Author(s):  
A. Sorokin ◽  
◽  
A. Konyushok ◽  
◽  
◽  
...  
2021 ◽  
Vol 1 (2) ◽  
Author(s):  
The Hung KHUONG ◽  
Phuong NGUYEN ◽  
Thi Cuc NGUYEN ◽  
Nhu Sang PHAM ◽  
Danh Tuyen NGUYEN

In northern Vietnam, the Tien Hai area is considered a high potential area of coal deposits. Twohundred fifty-six geochemical coal samples of 13 cores in the Tien Hai area investigate coal seams andcoal deposits to identify the correlation of coal seams. According to the statistical method and clusteranalysis of geochemical samples, the results indicate that the Mg, V, As, Ca, Zn, Cr, Co, K, Na, Sr, Fe,Ge, Re, U, Mo, Th, and Ga elements are good indicator elements of the major and trace elements in coal.Most of them comply with the normal or lognormal distribution rules. Besides, the Yb, Sc, Ho, Er, Tm,Lu, Y, Tb, Pr, Dy, and Sm elements are also good indicator elements for rare earth elements in the region.Therefore, the selected elements are used to identify the correlation of the coal seams in the Tien Hai area.Based on the similarity degree between studied objects, the results of grouping boreholes in coal seamsshow that the correlation of coal seam TV2-11 is suitable and acceptable, the coal seams TV3-6a, TV3-6b, and TV3-6c can be grouped into the coal seam TV3-6. These results present that the models can helpstudy geochemical coal samples and identify the correlation of the coal seams in the Tien Hai area.Additionally, the statistical analysis shows a remarkable degree to determine the correlation of the coalseams. Geochemical coal data can help to evaluate the indicator elements of the major, trace elements,and rare earth elements in coal seams and coal rashing of adjoining and pillar rocks in the Tien Hai area,northern Vietnam.


Author(s):  
Robert U. Ayres ◽  
Laura Talens Peiró

In the last few decades, progress in electronics, especially, has resulted in important new uses for a number of geologically rare metals, some of which were mere curiosities in the past. Most of them are not mined for their own sake (gold, the platinum group metals and the rare Earth elements are exceptions) but are found mainly in the ores of the major industrial metals, such as aluminium, copper, zinc and nickel. We call these major metals ‘attractors’ and the rare accompanying metals ‘hitch-hikers’. The key implication is that rising prices do not necessarily call forth greater output because that would normally require greater output of the attractor metal. We trace the geological relationships and the functional uses of these metals. Some of these metals appear to be irreplaceable in the sense that there are no known substitutes for them in their current functional uses. Recycling is going to be increasingly important, notwithstanding a number of barriers.


2013 ◽  
Vol 18 (3) ◽  
pp. 365-369 ◽  
Author(s):  
Sh.R. Malikov ◽  
V.P. Pikul ◽  
N.M. Mukhamedshina ◽  
V.N. Sandalov ◽  
S. Kudiratov ◽  
...  

2018 ◽  
Vol 56 ◽  
pp. 03018
Author(s):  
Anatoliy Sorokin ◽  
Andrey Konyushok

The analysis of the potential economic value of brown coals of the Far East of Russia is carried out when to use them as a complex chemical mineral resource. It was conducted assessment of industrial attractiveness to use coal combustion or coal chemical processing wastes as an additional source of gold, rare metals and rare earth elements. The Sergeevskoye brown coal deposit of the Zeya-Bureya Sedimentary Basin in the Amur Region was proposed as a potential standard facility for the construction of a coal-chemical processing plant to produce resin, montan wax, complex hydrocarbons with associated gold, rare metals and rare earth elements recovery.


RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36016-36022
Author(s):  
Tatiana Skripkina ◽  
Margarita Belokozenko ◽  
Svetlana Shatskaya ◽  
Vera Tikhova ◽  
Igor Lomovskiy

Mechanochemical oxidation leads to concentration of rare earth elements in soluble humic acids fraction.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Vinoth Kumar Kuppusamy ◽  
Amit Kumar ◽  
Maria Holuszko

With the supply restriction from traditional rare earth deposits, alternative sources of rare earth elements (REEs) such as coal are being studied. The United States National Energy Technology Laboratory has identified US coal deposits as a potential source of rare earth elements. Several techniques such as physical separation, flotation, ion-exchange, agglomeration, and leaching are being evaluated for the successful exploitation of these elements from coal and its by-products. A previous study published in the Geoscience BC 2018 mineral report on the characterization of REE in the British Columbian coal samples have shown that a major portion of the rare earth in the run of mine coal reports to the middling and tailing streams. Hence, this study is focused on the extraction of the rare earth from coal tailings. Several studies have shown the use of an alkali-acid leaching process to successfully demineralize various high ash coals to produce a clean coal concentrate since the ash-bearing components such as clay and quartz were removed from the coal during this process. In this study, the alkali-acid leach process was adopted to chemically clean coal tailings as well as to extract rare earth elements. Different process parameters such as sodium hydroxide (NaOH) concentration, temperature, and time were studied. Results showed that it is possible to extract more than 85% of REE with this process and simultaneously produce clean coal from coal tailing.


Sign in / Sign up

Export Citation Format

Share Document