scholarly journals Material efficiency: rare and critical metals

Author(s):  
Robert U. Ayres ◽  
Laura Talens Peiró

In the last few decades, progress in electronics, especially, has resulted in important new uses for a number of geologically rare metals, some of which were mere curiosities in the past. Most of them are not mined for their own sake (gold, the platinum group metals and the rare Earth elements are exceptions) but are found mainly in the ores of the major industrial metals, such as aluminium, copper, zinc and nickel. We call these major metals ‘attractors’ and the rare accompanying metals ‘hitch-hikers’. The key implication is that rising prices do not necessarily call forth greater output because that would normally require greater output of the attractor metal. We trace the geological relationships and the functional uses of these metals. Some of these metals appear to be irreplaceable in the sense that there are no known substitutes for them in their current functional uses. Recycling is going to be increasingly important, notwithstanding a number of barriers.

2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Katarzyna Staszak

Abstract The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.


2018 ◽  
Vol 56 ◽  
pp. 03018
Author(s):  
Anatoliy Sorokin ◽  
Andrey Konyushok

The analysis of the potential economic value of brown coals of the Far East of Russia is carried out when to use them as a complex chemical mineral resource. It was conducted assessment of industrial attractiveness to use coal combustion or coal chemical processing wastes as an additional source of gold, rare metals and rare earth elements. The Sergeevskoye brown coal deposit of the Zeya-Bureya Sedimentary Basin in the Amur Region was proposed as a potential standard facility for the construction of a coal-chemical processing plant to produce resin, montan wax, complex hydrocarbons with associated gold, rare metals and rare earth elements recovery.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 320 ◽  
Author(s):  
Dominik Zawadzki ◽  
Łukasz Maciąg ◽  
Tomasz Abramowski ◽  
Kevin McCartney

The geochemical and mineralogical characteristics of pelagic sediments collected from the Interoceanmetal Joint Organization (IOM) claim area, located in the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; eastern tropical Pacific), are described in this paper. The concentrations of rare earth elements (REE), as well as other selected critical elements contained in 135 sediment samples of siliceous clayey silts, are presented. The vertical and spatial variabilities of elements, with particular emphasis on REE as well as metals of the highest economic interest such as Cu, Ni, and Co, are detailed. The applied methods include grain size analysis by laser diffraction, geochemistry examination using ICP-MS, XRF, AAS, and CNS spectrometry, and XRD analysis of mineral composition (Rietveld method). Additionally, statistical methods such as factor analysis (FA) and principal components analysis (PCA) were applied to the results. Finally, a series of maps was prepared by geostatistical methods (universal kriging). Grain size analysis showed poor sorting of the examined fine-grained silts. ICP-MS indicated that total REE contents varied from 200 to 577 ppm, with a mean of 285 ppm, which is generally low. The contents of critical metals such as Cu, Ni, and Co were also low to moderate, apart from some individual sampling stations where total contents were 0.15% or more. Metal composition in sediments was dominated by Cu, Ni, and Zn. A mineral composition analysis revealed the dominance of amorphous biogenic opaline silica (27–58%), which were mostly remnants of diatoms, radiolarians, and sponges associated with clay minerals (23% to 48%), mostly Fe-smectite and illite, with mixed-layered illite/smectite. The high abundance of diagenetic barite crystals found in SEM−EDX observations explains the high content of Ba (up to 2.4%). The sediments showed complex lateral and horizontal fractionation trends for REE and critical metals, caused mostly by clay components, early diagenetic processes, admixtures of allogenic detrital minerals, or scavenging by micronodules.


2022 ◽  
Vol 4 ◽  
Author(s):  
Agnieszka Drobniak ◽  
Maria Mastalerz

Recent years have witnessed increasing awareness and interest in rare earth elements (REE). These several, usually unfamiliar elements, are key components of countless products used in our daily lives. Because of their use in many modern technologies, including those important for national security, the demand for REE grows, and so does the production, need to find their new sources and improve the extraction. This article provides an overview of REEs, their availability, production, and uses, and briefly discusses the future of these valuable and critical metals.  


2020 ◽  
Author(s):  
Elena Di Stefano ◽  
Giovanni Baccolo ◽  
Paolo Gabrielli ◽  
Aja Ellis ◽  
Barbara Delmonte ◽  
...  

<p>Deposition of dust on the Antarctic continent is controlled by many factors, such as the primary supply of dust particles from the continents [1], the long range transport, the hydrological cycle and the snow accumulation rate [2, 3]. Thus, the study of mineral dust in ice cores gives the possibility to reconstruct past climatic and environmental conditions.</p><p>Generally, when an ice core sample is melted, soluble elements dissolve in water, while insoluble elements remain in the solid phase. Other elements, such as iron, calcium, potassium and sulfur, typically partition between the soluble and the insoluble fractions. However recent studies have shown how the dust record may be chemically and physically altered in deep ice cores [4, 5], posing a challenge in the interpretation of the climatic signal that may lie within such samples. In particular, relative abundance of specific elements was shown to be different when comparing shallow and deep dust samples, suggesting that post depositional processes are taking place.</p><p>In this study we present a comparison between samples belonging to the Talos Dome ice core analyzed through two different techniques: instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). While the former is used to investigate only the insoluble fraction of dust, as it can only be applied to solid samples, the latter is used to assess the elemental composition of both the total and the soluble fraction of dust. We determined 45 elements through ICP-MS and 39 through INAA, with a good overlapping of the elements between the two techniques. Besides the determination of major elements, the high sensibility of both techniques also permitted the determination of trace elements. Among these, rare earth elements (REE) are of particular importance as they have been widely used as a geochemical tracer of aeolian dust sources [6]. We here present depth profiles for each analysed element, covering discrete portions of the entire ice core.</p><p> </p><p>Bibliography</p><p>[1] Petit, Jean-Robert, et al. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica." Nature 399.6735 (1999): 429-436.</p><p>[2] Lambert, Fabrice, et al. "Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core." Nature 452.7187 (2008): 616.</p><p>[3] Wegner, Anna, et al. "The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core." Journal of Geophysical Research: Atmospheres 120.19 (2015): 9916-9931.</p><p>[4] Baccolo, Giovanni, et al. “The contribution of synchrotron light for the characterization of atmospheric mineral dust in deep ice cores: Preliminary results from the Talos Dome ice core (East Antarctica).” Condensed Matter 3, no. 3 (2018): 25.</p><p>[5] De Angelis, Martine, et al. “Micro-investigation of EPICA Dome C bottom ice: Evidence of long term in situ processes involving acid-salt interactions, mineral dust, and organic matter.” Quaternary Science Reviews 78 (2013): 248-265.</p><p>[6] Gabrielli, Paolo, et al. “A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice.” Quaternary Science Reviews 29, no. 1-2 (2010): 265-273.</p><p><strong> </strong></p>


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 562 ◽  
Author(s):  
Nils Reinhardt ◽  
Joaquín Proenza ◽  
Cristina Villanova-de-Benavent ◽  
Thomas Aiglsperger ◽  
Telm Bover-Arnal ◽  
...  

Karst bauxite deposits are currently investigated as a new resource for rare earth elements (REE) in order to avoid present and future supply shortfalls of these critical metals. The present work focuses on the geochemistry and mineralogy of the REE in karst bauxite deposits of the Catalan Coastal Range (CCR), NE-Spain. It is revealed that the studied bauxitic ores have a dominant breccia and local ooido-pisoidic and pelitomorphic texture. The bauxitic ores are mostly composed of kaolinite and hematite, as well as of lesser amounts of boehmite, diaspore, rutile and calcite. The mineralogy and major element composition indicate incomplete bauxitization of an argillaceous precursor material possibly derived from the erosion of the Mesozoic Ebro massif paleo-high. The studied bauxites are characterized by ∑REE (including Sc, Y) between 286 and 820 ppm (av. 483 ppm) and light REE to heavy REE (LREE/HREE) ratios up to 10.6. REE are mainly concentrated in phosphate minerals, identified as monazite-(Ce) and xenotime-(Y) of detrital origin and unidentified REE-phosphates of a possible authigenic origin. REE remobilization presumably took place under acidic conditions, whereas REE entrapment in the form of precipitation of authigenic rare earth minerals from percolating solutions was related to neutral to slightly alkaline conditions. During the bauxitization process no significant REE fractionation took place and the REE distribution pattern of the bauxitic ores was governed by the REE budget of the precursor material. Finally, adsorption as a main REE scavenging mechanism in the studied CCR bauxite deposits should not be considered, since the presented data did not reveal significant REE contents in Fe-and Mn-oxyhydroxides and clay minerals.


Sign in / Sign up

Export Citation Format

Share Document