scholarly journals Acquisition of fungicide-resistance by the sensitive strain contact-cultured with dicarboximide fungicide-resistant strains of Botrytis cinerea.

1988 ◽  
Vol 54 (3) ◽  
pp. 290-295 ◽  
Author(s):  
Katsumi AKUTSU ◽  
Akira KUBO ◽  
Satoshi OKUYAMA
2006 ◽  
Vol 96 (11) ◽  
pp. 1195-1203 ◽  
Author(s):  
N. Korolev ◽  
T. Katan ◽  
Y. Elad

Botrytis cinerea marked strains combining traits of fungicide resistance or sensitivity (carbendazim, iprodione) with resistance to selenate were created and assessed for use in studying the dispersal of B. cinerea and its survival inside plant tissue under greenhouse conditions. Marked strains differed in their ability to cause lesions and to disperse in the greenhouse. A strain that was the most aggressive in infecting plants was also the most successful in spreading across the greenhouse. Following 7 to 14 days of exposure to marked inoculum, about 90% of plants showed quiescent B. cinerea infection with no significant difference between hosts or seasons. However, in a warm season, most of the plants were infected with wild-type B. cinerea, whereas most of the winter-recovered B. cinerea strains were of the marked phenotype, showing the importance of local inoculum from within the glasshouse in winter. The air of the greenhouse contained the same population of marked B. cinerea in warm and in cold periods, whereas the total population was significantly higher in summer. In the warm season, mycelium of B. cinerea inside plant debris lost viability within 3 to 4 months, whereas it stayed viable for 4 months in the winter (December to March) and started to lose viability in April.


1976 ◽  
Vol 56 (4) ◽  
pp. 861-864 ◽  
Author(s):  
A. T. BOLTON

Spores of Botrytis cinerea Pers. were obtained from snapdragon plants never exposed to fungicides. A few spores produced sporulating colonies on first exposure to benomyl, dicloran, and the experimental fungicide Bay Meb 6447 (triadimefon). Spores resistant to one fungicide were susceptible to the other two. Succeeding generations from the resistant colonies produced increasing numbers of resistant spores due to selective pressure exerted by the particular fungicide. Spores isolated from plants of fuchsia, geranium, and tuberous begonia that had been exposed to benomyl were completely resistant to this fungicide, but not to dicloran or triadimefon. Isolates from zinnia, marigold, and viola were susceptible to benomyl and exhibited some resistance to dicloran and triadimefon. No differences in pathogenicity were observed among susceptible and resistant strains.


1988 ◽  
Vol 54 (5) ◽  
pp. 593-599 ◽  
Author(s):  
Katsumi AKUTSU ◽  
Tatsuyuki IRINO ◽  
Akira KUBO ◽  
Satoshi OKUYAMA ◽  
Tadaaki HIBI

Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1198-1203 ◽  
Author(s):  
Dolores Fernández-Ortuño ◽  
Fengping Chen ◽  
Guido Schnabel

Botrytis cinerea, the causal agent of gray mold disease, is one of the most important plant-pathogenic fungi affecting strawberry. During the last decade, control of gray mold disease in the southeastern United States has largely been dependent on captan and the use of at-risk fungicides with single-site modes of action, including a combination of the quinone outside inhibitor (QoI) fungicide pyraclostrobin and succinate dehydrogenase inhibitor (SDHI) fungicide boscalid formulated as Pristine 38WG. Reports about loss of efficacy of Pristine in experimental fields in North Carolina prompted us to collect and examine 216 single-spore isolates from 10 conventional fields and 1 organic field in North Carolina and South Carolina in early summer 2011. Sensitivity to pyraclostrobin or boscalid was determined using a conidial germination assay with previously published discriminatory doses. Pyraclostrobin- and pyraclostrobin+boscalid-resistant isolates were found in all conventional fields (with some populations revealing no sensitive isolates) and in the organic field. Among the isolates collected, 66.7% were resistant to pyraclostrobin and 61.5% were resistant to both pyraclostrobin and boscalid. No isolates were identified that were resistant to boscalid but sensitive to pyraclostrobin, indicating that dual resistance may have derived from a QoI-resistant population. The molecular basis of QoI and SDHI fungicide resistance was determined in a subset of isolates. Polymerase chain reaction–restriction fragment length polymorphism analysis of the partial cytochrome b (CYTB) gene showed that pyraclostrobin-resistant isolates possessed the G143A mutation known to confer high levels of QoI fungicide resistance in fungi. Boscalid-resistant isolates revealed point mutations at codon 272 leading to the substitution of histidine to arginine (H272R) or tyrosine (H272Y), affecting the third Fe-S cluster region of the iron-sulfur protein (SdhB) target of SDHIs. The results of the study show that resistance to QoI fungicides and dual resistance to QoI and SDHI fungicides is common in B. cinerea from strawberry fields in the Carolinas. Resistant strains were more frequent in locations heavily sprayed with QoI and SDHI fungicides. However, resistance to both fungicides was also found in the unsprayed, organic field, indicating that some resistant strains may have been introduced from the nursery.


1992 ◽  
Vol 58 (4) ◽  
pp. 534-537
Author(s):  
Katsumi AKUTSU ◽  
Tomoyasu IKKA ◽  
Takeshi ENDO ◽  
Takako OHARA ◽  
Satoshi OKUYAMA

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1213-1219
Author(s):  
Zehua Su ◽  
Xin Zhang ◽  
Jianjiang Zhao ◽  
Wenqiao Wang ◽  
Lei Shang ◽  
...  

To provide a high-throughput, efficient, and accurate method to monitor multiple-fungicide resistance of Botrytis cinerea in the field, we used the suspension array, sequencing, and mycelial growth assay in our research. Discriminating-dose bioassays for detecting carbendazim, diethofencarb, boscalid, and iprodione resistance (CarR, DieR, BosR, and IprR, respectively) were used to analyze 257 isolates collected from Hebei Province in China during 2016 and 2017. High resistance frequencies to carbendazim (100%), diethofencarb (92.08%), and iprodione (86.59%) were detected. BosR isolates accounted for 11.67% of the total. In addition, 103 isolates were randomly selected for phenotype and genotype detection. The high-throughput suspension array was utilized to detect eight genotypes simultaneously, including BenA-E198, BenA-198A, SdhB-H272, SdhB-272Y, BcOS1-I365, BcOS1-365S, erg27-F412, and erg27-412S, which were associated with resistance toward carbendazim or diethofencarb, boscalid, iprodione, and fenhexamid (FenR), respectively. Most of the benzimidazole-resistant isolates (81.55%) possessed the E198V mutation in the BenA gene. Ninety-three isolates with dual resistance to carbendazim and diethofencarb showed the E198V/K mutation. All BosR isolates carried the H272R mutation in the SdhB gene. The I365S and Q369P+N373S (66.99%) mutations in the BcOS1 gene were more frequently observed. No mutation was detected in the erg27 gene in Hebei isolates. There were 13 resistance profile phenotypes. Phenotypes with triple resistance were the most common (83.50%), and CarRDieRBosSIprRFenS was the major type. CarR isolates that carried E198V/K/A were all highly resistant (HR) and only one F200Y mutant was moderately resistant (MR) to carbendazim. Isolates that possessed E198V/K were MR or HR to diethofencarb. BosR isolates that possessed H272R mutation were lowly resistant (LR). IprR isolates were all LR or MR. The distribution of half maximal effective concentrations of CarR isolates with E198V/K mutations and IprR isolates with Q369P+N373S mutations significantly increased from 2016 to 2017. Combined with our observations, a combination method of the high-throughput suspension array and the mycelial growth assay was suggested to accurately monitor multiple resistance of B. cinerea in the field.


2015 ◽  
Vol 77 ◽  
pp. 65-73 ◽  
Author(s):  
Anna Panebianco ◽  
Ivana Castello ◽  
Gabriella Cirvilleri ◽  
Giancarlo Perrone ◽  
Filomena Epifani ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Sotirios Konstantinou ◽  
Thomas Veloukas ◽  
Michaela Leroch ◽  
George Menexes ◽  
Matthias Hahn ◽  
...  

Botrytis cinerea is a pathogen with high genetic variability that has also shown high risk for fungicide resistance development. In total, 1,169 isolates obtained from strawberry (n = 297) and tomato (n = 872) in five geographic regions of Greece were tested for their sensitivity to several botryticides. A high frequency of isolates with multiple resistance to carbendazim, cyprodinil, pyraclostrobin, and boscalid was found in isolates from strawberry. In the isolates from tomato, the predominant phenotype was that of dual resistance to carbendazim and cyprodinil in the Crete island, of single resistance to carbendazim in the region of Preveza, and of sensitive isolates in the region of Kyparissia. None of the tested isolates was found to be fludioxonil resistant. High frequencies of boscalid-resistant phenotypes were observed in the strawberry isolates, while boscalid-resistance frequency in the tomato isolates was lower. H272R was the predominant sdhB mutation, associated with resistance to boscalid, in all the sampled isolates, while other sdhB mutations were found at low frequencies. B. cinerea group S, identified by the presence of a 21-bp insertion in the transcription factor mrr1 gene, was predominant within the tomato isolates obtained from all three sampled regions, with frequencies ranging from 62 to 75% of the isolates; whereas, within strawberry isolates, B. cinerea was predominant, with frequencies of 75 to 95%. Correlations of isolate genotype and fungicide resistance profile showed that B. cinerea sensu stricto isolates were more prone to the development of resistance to boscalid compared with the Botrytis group S isolates, which may explain the observed predominance of B. cinerea sensu stricto in strawberry fields.


Sign in / Sign up

Export Citation Format

Share Document