scholarly journals NONLOCAL BY TIME PROBLEM FOR SOME DIFFERENTIAL-OPERATOR EQUATION IN SPACES OF S AND S TYPES

2021 ◽  
Vol 9 (2) ◽  
pp. 53-69
Author(s):  
S. Bodnaruk ◽  
V. Gorodetskyi ◽  
R. Kolisnyk ◽  
N. Shevchuk

In the theory of fractional integro-differentiation the operator $A := \displaystyle \Big(I-\frac{\partial^2}{\partial x^2}\Big)$ is often used. This operator called the Bessel operator of fractional differentiation of the order of $ 1/2 $. This paper investigates the properties of the operator $B := \displaystyle \Big(I-\frac{\partial^2}{\partial x^2}+\frac{\partial^4}{\partial x^4}\Big)$, which can be understood as a certain analogue of the operator $A$. It is established that $B$ is a self-adjoint operator in Hilbert space $L_2(\mathbb{R})$, the narrowing of which to a certain space of $S$ type (such spaces are introduced in \cite{lit_bodn_2}) matches the pseudodifferential operator $F_{\sigma \to x}^{-1}[a(\sigma) F_{x\to \sigma}]$ constructed by the function-symbol $a(\sigma) = (1+\sigma^2+\sigma^4)^{1/4}$, $\sigma \in \mathbb{R}$ (here $F$, $F^{-1}$ are the Fourier transforms). This approach allows us to apply effectively the Fourier transform method in the study of the correct solvability of a nonlocal by time problem for the evolution equation with the specified operator. The correct solvability for the specified equation is established in the case when the initial function, by means of which the nonlocal condition is given, is an element of the space of the generalized function of the Gevrey ultradistribution type. The properties of the fundamental solution of the problem was studied, the representation of the solution in the form of a convolution of the fundamental solution of the initial function is given.

2021 ◽  
Vol 9 (1) ◽  
pp. 107-127
Author(s):  
R. Kolisnyk ◽  
V. Gorodetskyi ◽  
O. Martynyuk

In this paper we investigate the differential-operator equation $$ \partial u (t, x) / \partial t + \varphi (i \partial / \partial x) u (t, x) = 0, \quad (t, x) \in (0, + \infty) \times \mathbb {R} \equiv \Omega, $$ where the function $ \varphi \in C ^ {\infty} (\mathbb {R}) $ and satisfies certain conditions. Using the explicit form of the spectral function of the self-adjoint operator $ i \partial / \partial x $, in $ L_2 (\mathbb {R}) $ it is established that the operator $ \varphi (i \partial / \partial x) $ can be understood as a pseudodifferential operator in a certain space of type $ S $. The evolution equation $ \partial u / \partial t + \sqrt {I- \Delta} u = 0 $, $ \Delta = D_x ^ 2 $, with the fractionation differentiation operator $ \sqrt { I- \Delta} = \varphi (i \partial / \partial x) $, where $ \varphi (\sigma) = (1+ \sigma ^ 2) ^ {1/2} $, $ \sigma \in \mathbb {R} $ is attributed to the considered equation. Considered equation is a nonlocal multipoint problem with the initial function $ f $, which is an element of a space of type $ S $ or type $ S '$ which is a topologically conjugate with a space of type $ S $ space. The properties of the fundamental solution of such a problem are established, the correct solvability of the problem in the half-space $ t> 0 $ is proved, the representation of the solution in the form of a convolution of the fundamental solution with the initial function is found, the behavior of the solution $ u (t, \cdot) $ for $ t \to + \infty $ (solution stabilization) in spaces of type $ S '$.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hanna Verezhak ◽  
Vasyl Gorodetskyi

In this paper, we establish the correct solvability of a nonlocal multipoint in time problem for the evolutionary equation of a parabolic type with the Bessel operator of infinite order in the case where the initial function is an element of the space of generalized functions of type S∘′.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


1979 ◽  
Vol 30 (4) ◽  
pp. 529-543
Author(s):  
Shigenori Ando ◽  
Akio Ichikawa

SummaryApplications of “integral transforms of in-plane coordinate variables” in order to formulate unsteady planar lifting surface theories are demonstrated for both sub- and supersonic inviscid flows. It is concise and pithy. Fourier transforms are exclusively used, except for only Laplace transform in the supersonic streamwise direction. It is found that the streamwise Fourier inversion in the subsonic case requires some caution. Concepts based on the theory of distributions seem to be essential, in order to solve the convergence difficulties of integrals. Apart from this caution, the method of integral transforms of in-plane coordinate variables makes it be pure-mathematical to formulate the lifting surface problems, and makes aerodynamicist’s experiences and physical models such as vortices or doublets be useless.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Author(s):  
Daniel Liu

Previous algorithms for solving the approximate string matching with Hamming distance problem with wildcard ("don't care") characters have been shown to take \(O(|\Sigma| N \log M)\) time, where \(N\) is the length of the text, \(M\) is the length of the pattern, and \(|\Sigma|\) is the size of the alphabet. They make use of the Fast Fourier Transform for efficiently calculating convolutions. We describe a novel approach of the problem, which makes use of special encoding schemes that depend on \((|\Sigma| - 1)\)-simplexes in \((|\Sigma| - 1)\)-dimensional space.


1970 ◽  
Vol 22 (5) ◽  
pp. 1055-1070
Author(s):  
N. A. Derzko

The theory of gentle perturbations was introduced by Friedrichs [3] as a tool to study the perturbation theory of the absolutely continuous spectrum of a self-adjoint operator H0 and developed in an abstract form by Rejto [7; 8]. Two examples of gentle structures are well knowTn. In the first of these, the gentle operators have Hölder continuous complex or operator-valued kernels, and in the second, the kernels are Fourier transforms of L1 functions [4].The gentle structure has traditionally been verified in the case when H0 is in its spectral representation, that is, when H0 is the simple differentiation operator. This is not the natural setting for the second example mentioned above where one should consider the simple differentiation operator in a suitable L2-space and perturbations with L1 kernels.


2013 ◽  
Vol 65 (3) ◽  
pp. 377-392 ◽  
Author(s):  
V. V. Horodets’kyi ◽  
O. V. Martynyuk ◽  
R. I. Petryshyn

1988 ◽  
Vol 42 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Steven M. Donahue ◽  
Chris W. Brown ◽  
Robert J. Obremski

Two- and three-component mixtures of methylated benzenes were analyzed with the use of both infrared and UV spectra. The spectra of known mixtures were Fourier transformed and coefficients from the transforms selected to form coordinates of vectors. The resulting vectors were subjected to factor analysis to obtain representations for multicomponent analysis. A total of eight data sets were analyzed by factor analysis after preprocessing by taking the Fourier transforms of the spectra. The eight data sets were also analyzed by the P-matrix method (inverse Beer's law) in the spectral domain after preprocessing of the data to allow selection of the optimum analytical wavenumbers. This spectral method was compared to the Fourier transform method using cross-validation, in which one sample at a time was left out of the standards and treated as an unknown. The Standard Error of Prediction (SEP) was calculated for the two methods for all possible numbers of vectors and numbers of wavenumbers, starting with the number equal to the number of components and increasing up to a total number of standards or some reasonable cut-off value. Processing in the Fourier domain clearly produced the best results for seven of the data sets and equal results for the other set.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
V. V. Gorodetskiy ◽  
R. S. Kolisnyk ◽  
N. M. Shevchuk

In the paper, we investigate a nonlocal multipoint by a time problem for the evolution equation with the operator A=I−Δω/2, Δ=d2/dx2, and ω∈1;−2 is a fixed parameter. The operator A is treated as a pseudodifferential operator in a certain space of type S. The solvability of this problem is proved. The representation of the solution is given in the form of a convolution of the fundamental solution with the initial function which is an element of the space of generalized functions of ultradistribution type. The properties of the fundamental solution are investigated. The behavior of the solution at t⟶+∞ (solution stabilization) in the spaces of generalized functions of type S′ and the uniform stabilization of the solution to zero on ℝ are studied.


Sign in / Sign up

Export Citation Format

Share Document