Gentle Perturbations of with Application to

1970 ◽  
Vol 22 (5) ◽  
pp. 1055-1070
Author(s):  
N. A. Derzko

The theory of gentle perturbations was introduced by Friedrichs [3] as a tool to study the perturbation theory of the absolutely continuous spectrum of a self-adjoint operator H0 and developed in an abstract form by Rejto [7; 8]. Two examples of gentle structures are well knowTn. In the first of these, the gentle operators have Hölder continuous complex or operator-valued kernels, and in the second, the kernels are Fourier transforms of L1 functions [4].The gentle structure has traditionally been verified in the case when H0 is in its spectral representation, that is, when H0 is the simple differentiation operator. This is not the natural setting for the second example mentioned above where one should consider the simple differentiation operator in a suitable L2-space and perturbations with L1 kernels.

2001 ◽  
Vol 131 (6) ◽  
pp. 1245-1255 ◽  
Author(s):  
I. Antoniou ◽  
S. A. Shkarin

Let A be a self-adjoint operator on a Hilbert space. It is well known that A admits a unique decomposition into a direct sum of three self-adjoint operators Ap, Aac and Asc such that there exists an orthonormal basis of eigenvectors for the operator Ap, the operator Aac has purely absolutely continuous spectrum and the operator Asc has purely singular continuous spectrum. We show the existence of a natural further decomposition of the singular continuous component Asc into a direct sum of two self-adjoint operators and . The corresponding subspaces and spectra are called decaying and purely non-decaying singular subspaces and spectra. Similar decompositions are also shown for unitary operators and for general normal operators.


Author(s):  
M. S. P. Eastham ◽  
K. M. Schmidt

It is known that one-dimensional Dirac systems with potentials q which tend to −∞ (or ∞) at infinity, such that 1/q is of bounded variation, have a purely absolutely continuous spectrum covering the whole real line. We show that, for the system on a half-line, there are no local maxima of the spectral density (points of spectral concentration) above some value of the spectral parameter if q satisfies certain additional regularity conditions. These conditions admit thrice-differentiable potentials of power or exponential growth. The eventual sign of the derivative of the spectral density depends on the boundary condition imposed at the regular end-point.


2021 ◽  
Vol 9 (1) ◽  
pp. 107-127
Author(s):  
R. Kolisnyk ◽  
V. Gorodetskyi ◽  
O. Martynyuk

In this paper we investigate the differential-operator equation $$ \partial u (t, x) / \partial t + \varphi (i \partial / \partial x) u (t, x) = 0, \quad (t, x) \in (0, + \infty) \times \mathbb {R} \equiv \Omega, $$ where the function $ \varphi \in C ^ {\infty} (\mathbb {R}) $ and satisfies certain conditions. Using the explicit form of the spectral function of the self-adjoint operator $ i \partial / \partial x $, in $ L_2 (\mathbb {R}) $ it is established that the operator $ \varphi (i \partial / \partial x) $ can be understood as a pseudodifferential operator in a certain space of type $ S $. The evolution equation $ \partial u / \partial t + \sqrt {I- \Delta} u = 0 $, $ \Delta = D_x ^ 2 $, with the fractionation differentiation operator $ \sqrt { I- \Delta} = \varphi (i \partial / \partial x) $, where $ \varphi (\sigma) = (1+ \sigma ^ 2) ^ {1/2} $, $ \sigma \in \mathbb {R} $ is attributed to the considered equation. Considered equation is a nonlocal multipoint problem with the initial function $ f $, which is an element of a space of type $ S $ or type $ S '$ which is a topologically conjugate with a space of type $ S $ space. The properties of the fundamental solution of such a problem are established, the correct solvability of the problem in the half-space $ t> 0 $ is proved, the representation of the solution in the form of a convolution of the fundamental solution with the initial function is found, the behavior of the solution $ u (t, \cdot) $ for $ t \to + \infty $ (solution stabilization) in spaces of type $ S '$.


1980 ◽  
Vol 87 (3) ◽  
pp. 383-392
Author(s):  
Alan MacLean

It has long been known, after Wiener (e.g. see (11), vol. 1, p. 108, (5), (8), §5·6)) that a measure μ whose Fourier transform vanishes at infinity is continuous, and generally, that μ is continuous if and only if is small ‘on the average’. Baker (1) has pursued this theme and obtained concise necessary and sufficient conditions for the continuity of μ, again expressed in terms of the rate of decrease of . On the other hand, for continuous μ, Rudin (9) points out the difficulty in obtaining criteria based solely on the asymptotic behaviour of by which one may determine whether μ has a singular component. The object of this paper is to show further that any such criteria must be complicated indeed. We shall show that the absolutely continuous measures on T = [0, 2π) whose Fourier transforms are the most well-behaved (namely, those of the form (1/2π)f(x)dx, where f has an absolutely convergent Fourier series) are such that one may modify their transforms on ‘large’ subsets of Z so that they become the transforms of singular continuous measures. Moreover, the singular continuous measures in question may be chosen so that their Fourier transforms do not vanish at infinity.


Sign in / Sign up

Export Citation Format

Share Document