scholarly journals Glacial changes of five southwest British Columbia icefields, Canada, mid-1980s to 1999

2008 ◽  
Vol 54 (186) ◽  
pp. 469-478 ◽  
Author(s):  
Jeffrey A. VanLooy ◽  
Richard R. Forster

AbstractThis study adjusts and compares digital elevation models (DEMs) created from photogrammetric and interferometric synthetic aperture radar techniques to determine volume and surface elevation changes of five icefields in a remote region of southwest British Columbia, Canada, between the mid-1980s and 1999. Preliminary differences between the DEMs in ice-free and vegetation-free areas indicated variable elevation offsets with increasing altitude (11 m km−1) and with increasing slope (2.7 m (10°)−1). Results indicate a surface elevation change of −6.0 ± 2.7 m (−0.5 ± 0.2 m a−1) and a total volume loss of −19.4 ± 8.8 km3 (−1.5 ± 0.7 km3 a−1), which represents a potential sea-level rise contribution of 0.004 ± 0.002 mm a−1. Temperature and snowfall data from four nearby meteorological stations indicate that increased temperatures and decreased snowfall throughout the late 1980s and 1990s are a likely cause of the thinning. Glacier terminus positions were compared between a historical map (1927) and satellite images (1974, 1990/91 and 2000/01). All observed glaciers were in retreat between 1927 and 1974, as well as between 1990/91 and 2000/01, but many glaciers advanced or significantly slowed in their retreat between 1974 and 1990/91.

2019 ◽  
Vol 13 (9) ◽  
pp. 2511-2535 ◽  
Author(s):  
Wael Abdel Jaber ◽  
Helmut Rott ◽  
Dana Floricioiu ◽  
Jan Wuite ◽  
Nuno Miranda

Abstract. The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a−1 for epoch 1 and -5.60±0.74 km3 a−1 for epoch 2, while for SPI these are -14.87±0.52 km3 a−1 for epoch 1 and -11.86±1.99 km3 a−1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a−1 for epoch 1 and 0.043±0.005 mm a−1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.


2011 ◽  
Vol 52 (59) ◽  
pp. 1-7 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally

AbstractChanges in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kgm–3, which along with 900 kgm–3 for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kgm–3. We show that using an average (or ‘effective’) density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.


2010 ◽  
Vol 56 (195) ◽  
pp. 65-74 ◽  
Author(s):  
Yong Zhang ◽  
Koji Fujita ◽  
Shiyin Liu ◽  
Qiao Liu ◽  
Xin Wang

AbstractDigital elevation models (DEMs) of the ablation area of Hailuogou glacier, China, produced from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data obtained in 2009, differential GPS (DGPS) data surveyed in 2008 and aerial photographs acquired in 1966 and 1989 are differenced to estimate long- and short-term glacier surface elevation change (dh/dt). The mean dh/dt of the ablation area over 43 years (1966–2009) is −1.1 ± 0.4 m a−1. Since 1989 the thinning has accelerated significantly. Ice velocities measured by DGPS at 28 fixed stakes implanted in the ablation area increase with distance from the glacier terminus, ranging from 41.0 m a−1 approaching the glacier terminus to a maximum of 205.0 m a−1 at the base of an icefall. Our results reveal that the overall average ice velocity in the ablation area has undergone significant temporal variability over the past several decades. Changes in glacier surface elevation in the ablation area result from the combined effects of climate change and glacier dynamics, which are driven by different factors for different regions and periods.


2011 ◽  
Vol 52 (59) ◽  
pp. 109-115 ◽  
Author(s):  
Jeffrey A. VanLooy ◽  
Richard R. Forster

AbstractInvestigations into glacial changes, including understanding variations in the rates of glacial volume and surface-elevation changes, have increased over the past decade. This study uses historical glacier elevation data in the form of topographic maps from 1970 and a digital elevation model from the mid-1980s to calculate surface-elevation and volume changes for Ha-Iltzuk Icefield, southwest British Columbia, Canada. Results indicate that the icefield thinned at an average rate of 0.76±0.25 ma–1 during this period. A previous study of Ha-Iltzuk Icefield also using the geodetic method found a thinning rate of 1.0±0.20ma–1 between the mid-1980s and 1999, indicating a slight increase in the amount of icefield thinning. Within the ablation zone, thinning increased with decreasing elevation at a rate of 1.9±0.68 ma–1 km–1 between these two periods (1970 to mid-1980s versus mid-1980s to 1999). Analysis of meteorological data suggests that increases in both temperature and rainfall, as well as decreases in snowfall, likely contributed to the increased thinning rate.


2016 ◽  
Vol 10 (2) ◽  
pp. 681-694 ◽  
Author(s):  
Juan Ignacio López-Moreno ◽  
Jesús Revuelto ◽  
Ibai Rico ◽  
Javier Chueca-Cía ◽  
Asunción Julián ◽  
...  

Abstract. This paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier in the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier's surface area by analysis of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs) generated from topographic maps (1981 and 1999), airborne lidar (2010) and terrestrial laser scanning (TLS, 2011, 2012, 2013, and 2014) data. We interpreted the changes in the glacier based on climate data from nearby meteorological stations. The results indicate that the degradation of this glacier accelerated after 1999. The rate of ice surface loss was almost three times greater during 1999–2006 than during earlier periods. Moreover, the rate of glacier thinning was 1.85 times faster during 1999–2010 (rate of surface elevation change  = −8.98 ± 1.80 m, glacier-wide mass balance  = −0.73 ± 0.14 m w.e. yr−1) than during 1981–1999 (rate of surface elevation change  = −8.35 ± 2.12 m, glacier-wide mass balance  = −0.42 ± 0.10 m w.e. yr−1). From 2011 to 2014, ice thinning continued at a slower rate (rate of surface elevation change  = −1.93 ± 0.4 m yr−1, glacier-wide mass balance  = −0.58 ± 0.36 m w.e. yr−1). This deceleration in ice thinning compared to the previous 17 years can be attributed, at least in part, to two consecutive anomalously wet winters and cool summers (2012–2013 and 2013–2014), counteracted to some degree by the intense thinning that occurred during the dry and warm 2011–2012 period. However, local climatic changes observed during the study period do not seem sufficient to explain the acceleration of ice thinning of this glacier, because precipitation and air temperature did not exhibit statistically significant trends during the study period. Rather, the accelerated degradation of this glacier in recent years can be explained by a strong disequilibrium between the glacier and the current climate, and likely by other factors affecting the energy balance (e.g., increased albedo in spring) and feedback mechanisms (e.g., heat emitted from recently exposed bedrock and debris covered areas).


2016 ◽  
Vol 62 (236) ◽  
pp. 1083-1092 ◽  
Author(s):  
SHUN TSUTAKI ◽  
SHIN SUGIYAMA ◽  
DAIKI SAKAKIBARA ◽  
TAKANOBU SAWAGAKI

ABSTRACTTo quantify recent thinning of marine-terminating outlet glaciers in northwestern Greenland, we carried out field and satellite observations near the terminus of Bowdoin Glacier. These data were used to compute the change in surface elevation from 2007 to 2013 and this rate of thinning was then compared with that of the adjacent land-terminating Tugto Glacier. Comparing DEMs of 2007 and 2010 shows that Bowdoin Glacier is thinning more rapidly (4.1 ± 0.3 m a−1) than Tugto Glacier (2.8 ± 0.3 m a−1). The observed negative surface mass-balance accounts for <40% of the elevation change of Bowdoin Glacier, meaning that the thinning of Bowdoin Glacier cannot be attributable to surface melting alone. The ice speed of Bowdoin Glacier increases down-glacier, reaching 457 m a−1 near the calving front. This flow regime causes longitudinal stretching and vertical compression at a rate of −0.04 a−1. It is likely that this dynamically-controlled thinning has been enhanced by the acceleration of the glacier since 2000. Our measurements indicate that ice dynamics indeed play a predominant role in the rapid thinning of Bowdoin Glacier.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


Sign in / Sign up

Export Citation Format

Share Document