scholarly journals Arctic sea-ice change: a grand challenge of climate science

2010 ◽  
Vol 56 (200) ◽  
pp. 1115-1121 ◽  
Author(s):  
Vladimir M. Kattsov ◽  
Vladimir E. Ryabinin ◽  
James E. Overland ◽  
Mark C. Serreze ◽  
Martin Visbeck ◽  
...  

AbstractOver the period of modern satellite observations, Arctic sea-ice extent at the end of the melt season (September) has declined at a rate of >11% per decade, and there is evidence that the rate of decline has accelerated during the last decade. While climate models project further decreases in sea- ice mass and extent through the 21st century, the model ensemble mean trend over the period of instrumental records is smaller than observed. Possible reasons for the apparent discrepancy between observations and model simulations include observational uncertainties, vigorous unforced climate variability in the high latitudes, and limitations and shortcomings of the models stemming in particular from gaps in understanding physical process. The economic significance of a seasonally sea-ice-free future Arctic, the increased connectivity of a warmer Arctic with changes in global climate, and large uncertainties in magnitude and timing of these impacts make the problem of rapid sea-ice loss in the Arctic a grand challenge of climate science. Meaningful prediction/projection of the Arctic sea-ice conditions for the coming decades and beyond requires determining priorities for observations and model development, evaluation of the ability of climate models to reproduce the observed sea-ice behavior as a part of the broader climate system, improved attribution of the causes of Arctic sea-ice change, and improved understanding of the predictability of sea-ice conditions on seasonal through centennial timescales in the wider context of the polar climate predictability.

2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2021 ◽  
Author(s):  
Stephanie Hay ◽  
Paul Kusnher

<p>Antarctic sea ice has gradually increased in extent over the forty-year-long satellite record, in contrast with the clear decrease in sea-ice extent seen in the Arctic over the same time period. However, state-of-the-art climate models ubiquitously project Antarctic sea-ice to decrease over the coming century, much as they do for Arctic sea-ice. Several recent years have also seen record low Antarctic sea-ice. It is therefore of interest to understand what the climate response to Antarctic sea-ice loss will be. </p><p>We have carried out new fully coupled climate model simulations to assess the response to sea-ice loss in either hemisphere separately or coincidentally under different albedo parameter settings to determine the relative importance of each. By perturbing the albedo of the snow overlying the sea ice and the albedo of the bare sea ice, we obtain a suite of simulations to assess the linearity and additivity of sea-ice loss. We find the response to sea-ice loss in each hemisphere exhibits a high degree of additivity, and can simply be decomposed into responses due to loss in each hemisphere separately. We find that the response to Antarctic sea-ice loss exceeds that of Arctic sea-ice loss in the tropics, and that Antarctic sea-ice loss leads to statistically significant Arctic warming, while the opposite is not true.</p><p>With these new simulations and one in which CO<sub>2</sub> is instantaneously doubled , we can further characterize the response to sea-ice loss from each hemisphere using an extension to classical pattern scaling that includes three controlling parameters. This allows us to simultaneously compute the sensitivity patterns to Arctic sea-ice loss, Antarctic sea-ice loss, and to tropical warming. The statistically significant response to Antarctic sea-ice loss in the Northern Hemisphere extratropics is found to be mediated by tropical warming and small amounts of Arctic sea-ice loss.</p>


2020 ◽  
Author(s):  
Esther C. Brady ◽  
Bette L. Otto-Bliesner ◽  
Masa Kageyama ◽  

<p>New to CMIP6 is the Tier 1 lig127k experiment, designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models and following a common experimental protocol. We present a multi-model ensemble of 17 climate models, all of which (except for two) have also completed the CMIP6 DECK experiments, looking at the lig127k Arctic’s responses across models and the relationships with each model’s Equilibrium Climate Sensitivity (ECS), preindustrial sea ice thickness and 127ka temperature anomalies.</p><p>Boreal insolation anomalies at 127 ka enhance the seasonal cycle of Arctic sea ice, though with notable differences among the models. The consensus from the lig127k sea ice distributions is a reduced minimum (August-September) summer sea ice extent in the Arctic as compared to the piControl simulations. Sea ice remains above 15% concentrations over the central Arctic Ocean in all but one of the lig127k simulations. More than half of the models simulate a retreat of the Arctic minimum ice edge similar to the average of the last 2 decades. The lig127k minimum Arctic sea ice area anomalies show a strong negative correlation with the Arctic (60-90°N) annual surface temperature anomalies but only a weak correlation with the corresponding June-July-August (JJA) temperature anomalies. Memory in the ocean and cryosphere provide feedbacks to maintain larger positive temperature anomalies, December-January-February (DJF) and annually, in the Arctic than in JJA. The models contributing to the lig127k ensemble have an ECS varying from 2.1 to 5.3°C. There is a notable relationship between the ECS and simulation of lig127k minimum Arctic sea ice area.  With very limited Arctic sea ice proxies for 127 ka, and with evolving interpretation of the relationships of these proxies with sea ice coverage, it is still difficult to rule out the high or low values of ECS from the proxy data.</p>


Current knowledge on Arctic sea ice extent and thickness variability is reviewed, and we examine whether measurements to date provide evidence for the impact of climate change. The total Arctic ice extent has shown a small but significant reduction of (2.1 ± 0.9)% during the period 1978-87, after apparently increasing from a lower level in the early 1970s. However, open water within the pack ice limit has also diminished, so that the reduction of sea ice area is only (1.8 ± 1.2)%. This stability conceals large interannual variations and trends in individual regions of the Arctic Ocean and sub-Arctic seas, which are out of phase with one another and so have little net impact on the overall hemispheric ice extent. The maximum annual global extent (occurring during the Antarctic winter) shows a more significant decrease of 5% during 1972-87. Ice thickness distribution has been measured by submarine sonar profiling, moored upward sonars, airborne laser prohlometry, airborne electromagnetic techniques and drilling. Promising new techniques include: sonar mounted on an AUV or neutrally buoyant float; acoustic tomography or thermometry; and inference from a combination of microwave sensors. In relation to climate change, the most useful measurement has been repeated submarine sonar profiling under identical parts of the Arctic, which offers some evidence of a decline in mean ice thickness in the 1980s compared to the 1970s. The link between mean ice thickness and climatic warming is complex because of the effects of dynamics and deformation. Only fast ice responds primarily to air temperature changes and one can predict thinning of fast ice and extension of the open water season in fast ice areas. Another region of increasingly mild ice conditions is the central Greenland Sea where winter thermohaline convection is triggered by cyclic growth and melt of local young ice. In recent years convection to the bottom has slowed or ceased, possibly related to moderation of ice conditions.


2021 ◽  
Vol 34 (9) ◽  
pp. 3609-3627
Author(s):  
Zili Shen ◽  
Anmin Duan ◽  
Dongliang Li ◽  
Jinxiao Li

AbstractThe capability of 36 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and their 24 CMIP5 counterparts in simulating the mean state and variability of Arctic sea ice cover for the period 1979–2014 is evaluated. In addition, a sea ice cover performance score for each CMIP5 and CMIP6 model is provided that can be used to reduce the spread in sea ice projections through applying weighted averages based on the ability of models to reproduce the historical sea ice state. Results show that the seasonal cycle of the Arctic sea ice extent (SIE) in the multimodel ensemble (MME) mean of the CMIP6 simulations agrees well with observations, with a MME mean error of less than 15% in any given month relative to the observations. CMIP6 has a smaller intermodel spread in climatological SIE values during summer months than its CMIP5 counterpart. In terms of the monthly SIE trends, the CMIP6 MME mean shows a substantial reduction in the positive bias relative to the observations compared with that of CMIP5. The spread of September SIE trends is very large, not only across different models but also across different ensemble members of the same model, indicating a strong influence of internal variability on SIE evolution. Based on the assumptions that the simulations of CMIP6 models are from the same distribution and that models have no bias in response to external forcing, we can infer that internal variability contributes to approximately 22% ± 5% of the September SIE trend over the period 1979–2014.


2014 ◽  
Vol 27 (8) ◽  
pp. 2819-2841 ◽  
Author(s):  
E. C. van der Linden ◽  
R. Bintanja ◽  
W. Hazeleger ◽  
C. A. Katsman

Abstract Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread: 1) model formulation, 2) control climate state, and 3) internal climate variability. This study focuses on the influence of Arctic sea ice in the control climate on the intermodel spread in warming, using idealized 1% yr−1 CO2 increase simulations of 33 state-of-the-art global climate models, and combining sea ice–temperature relations on local to large spatial scales. On the Arctic mean scale, the spread in temperature trends is only weakly related to ice volume or area in the control climate, and is probably not dominated by internal variability. This suggests that other processes, such as ocean heat transport and meteorological conditions, play a more important role in the spread of long-term Arctic warming than control sea ice conditions. However, on a local scale, sea ice–warming relations show that in regions with more sea ice, models generally simulate more warming in winter and less warming in summer. The local winter warming is clearly related to control sea ice and universal among models, whereas summer sea ice–warming relations are more diverse, and are probably dominated by differences in model formulation. To obtain a more realistic representation of Arctic warming, it is recommended to simulate control sea ice conditions in climate models so that the spatial pattern is correct.


2014 ◽  
Vol 8 (4) ◽  
pp. 1195-1204 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the representative concentration pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all nine models. RCP4.5 demonstrates continued summer Arctic sea ice decline after the forcing stabilizes due to continued warming on longer timescales. Based on the analysis of these two scenarios, we suggest that Arctic summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in seven of nine models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and the reversibility of declines in seasonal sea ice extent.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


Author(s):  
Ke Wei ◽  
Jiping Liu ◽  
Qing Bao ◽  
Bian He ◽  
Jiao Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document