Streaming flow in an ice sheet through a glacial cycle

2003 ◽  
Vol 36 ◽  
pp. 117-128 ◽  
Author(s):  
Geoffrey S. Boulton ◽  
Magnus Hagdorn ◽  
Nicholas R.J. Hulton

AbstractGeological evidence indicates that the flow of the last European ice sheet was dominated by numerous large ice streams. Although some were ephemeral, most were sustained along well-defined axes at least during the period of retreat after the Last Glacial Maximum. A thermomechanically coupled three-dimensional numerical ice-sheet model has been used to simulate the ice sheet through the whole of the last glacial cycle, but with a spatial resolution that is high enough to capture streaming behaviour. An experiment with a smoothed bed is used to explore the self-organizing behaviour of streams when they are not forced by bed topography. On such a bed, streams typically have a width of 1–10 km, much narrower than the inferred European ice streams. An experiment using a realistic topography suggests that widths of ice streams are strongly influenced by topography, and tend to be of order 100 km. Moreover, even where the topography is muted, it stabilizes the locations of ice streams which, once formed, tend to be sustained along pre-existing axes. The model creates patterns of streaming that are similar to inferred patterns, suggesting strong topographic forcing. In a simulation using a realistic bed in which the ice was very cold and basal melting rarely occurred, streams were again very narrow. Widespread streaming under low driving stresses tends to reduce ice-sheet thicknesses compared with weak streaming or models that do not produce streaming. Consequently, ice thicknesses are smaller and tend to be consistent with the results of sea-level inversions based on geophysical Earth models.

1997 ◽  
Vol 25 ◽  
pp. 259-268 ◽  
Author(s):  
Mikhail Verbitsky ◽  
Barry Saltzman

A three-dimensional (3-D), high-resolution, non-linearly viscous, non-isothermal ice-sheet model is employed to calculate the “present-day” equilibrium regime of the Antarctic ice sheet and its evolution during the last glacial cycle. The model is augmented by an approximate formula for ice-sheet basal temperature, based on a scaling of the thermodynamic equation for the ice flow. Steady-state solutions for both the shape and extent of the areas of basal melting (or freezing) are shown to be in good agreement with those obtained from the solution of the full 3-D thermodynamic equation. The solution for the basal temperature field of the West Antaretie Siple Coast produces areas at the pressure-melting point separated by strips of frozen-to-bed ice, the structure of which is reminiscent of Ice Streams A–E. This configuration appears to be robust, preserving its features in spite of climatic changes during the last glacial cycle. Ice Stream C seems to be more vulnerable to stagnation, switching to a passive mode at least once during the penultimate interglacial. We conjecture that the peculiarities of local topography determine the unique behavior of Ice Stream C: reduced basal stress and, consequently, relatively weak warming due to internal friction and basal sliding is not able to counteract the advective cooling during the periods of increased snowfall rate.


1997 ◽  
Vol 43 (144) ◽  
pp. 283-299 ◽  
Author(s):  
Johan Kleman ◽  
Clas Hättestrand ◽  
Ingmar Borgström ◽  
Arjen Stroeven

AbstractThe evolution of ice-sheet configuration and flow pattern in Fennoscandia through the last glacial cycle was reconstructed using a glacial geological inversion model, i.e. a theoretical model that formalises the procedure of using the landform record to reconstruct ice sheets. The model uses mapped flow traces and deglacial melt-water landforms, as well as relative chronologies derived from cross-cutting striae and till lineations, as input data. Flow-trace systems were classified into four types: (i) time-transgressive wet-bed deglacial fans, (ii) time-transgressive frozen-bed deglacial fans, (iii) surge fans, and (iv) synchronous non-deglacial (event) fans. Using relative chronologies and aggregation of fans into glaciologically plausible patterns, a series of ice-sheet Configurations at different time slices was erected. A chronology was constructed through correlation with dated stratigraphical records and proxy data reflecting global ice volume. Geological evidence exists for several discrete ice-sheet configurations centred over the Scandinavian mountain range during the early Weichselian. The build-up of the main Weichselian Fennoscandian ice sheet started at approximately 70 Ka, and our results indicate that it was characterised by an ice sheet with a centre of mass located over southern Norway. This configuration had a flow pattern which is poorly reproduced by current numerical models of the Fennoscandian ice sheet. At the Last Glacial Maximum the main ice divide was located overthe Gulf of Bothnia. A major bend in the ice divide was caused by outflow of ice to the northwest over the lowest part of the Scandinavian mountain chain. Widespread areas of preserved pre-late-Weichselian landscapes indicate that the ice sheet had a frozen-bed core area, which was only partly diminished in size by inward-transgressive wet-bed zones during the decay phase.


2014 ◽  
Vol 10 (4) ◽  
pp. 1453-1471 ◽  
Author(s):  
M. Löfverström ◽  
R. Caballero ◽  
J. Nilsson ◽  
J. Kleman

Abstract. We present modelling results of the atmospheric circulation at the cold periods of marine isotope stage 5b (MIS 5b), MIS 4 and the Last Glacial Maximum (LGM), as well as the interglacial. The palaeosimulations are forced by ice-sheet reconstructions consistent with geological evidence and by appropriate insolation and greenhouse gas concentrations. The results suggest that the large-scale atmospheric winter circulation remained largely similar to the interglacial for a significant part of the glacial cycle. The proposed explanation is that the ice sheets were located in areas where their interaction with the mean flow is limited. However, the LGM Laurentide Ice Sheet induces a much larger planetary wave that leads to a zonalisation of the Atlantic jet. In summer, the ice-sheet topography dynamically induces warm temperatures in Alaska and central Asia that inhibits the expansion of the ice sheets into these regions. The warm temperatures may also serve as an explanation for westward propagation of the Eurasian Ice Sheet from MIS 4 to the LGM.


2020 ◽  
Author(s):  
Harunur Rashid ◽  
Mary Smith ◽  
Min Zeng ◽  
Yang Wang ◽  
Julie Drapeau ◽  
...  

<p>Hughes et al. (1977) hypothesized of a pan-Arctic Ice Sheet that behaved as a single dynamic system during the Last Glacial Maximum. Moreover, the authors suggested a nearly grounded ice shelf in Davis Strait implying that little or no exchange between Baffin Island and the Labrador Sea. Here we present data at 1-cm (<100 years) resolution between ~12 ka and 45 ka that shed light on the discharge from Hudson Strait and Lancaster Sound ice streams of the Late Pleistocene Laurentide Ice Sheet. A reference sediment core at 938 m water depth on the SE Baffin Slope was investigated with new oxygen isotope stratigraphy, X-ray fluorescence geochemistry, and 18 14C-AMS dates and correlated to 14 regional deep-water cores. Detrital carbonate-rich sediment layers H0-H4 were derived principally from Hudson Strait. Shortly after H2 and H3, the shelf-crossing Cumberland Sound ice stream supplied dark brown ice-proximal stratified sediments but no glacigenic debris-flow deposits. The counterparts of H3, H4, and (?)H5 events in the deep Labrador basin are 4–10 m thick units of thin-bedded carbonate-rich mud turbidites from glacigenic debris flows on the Hudson Strait slope. The behavior of the Hudson Strait ice stream changed through the last glacial cycle. The Hudson Strait ice stream remained at the shelf break in H3-H5 but retreated rapidly across the shelf in H0-H2 and did not deglaciate Hudson Bay. During this time, Cumberland Sound ice twice reached the shelf edge. In H3–H5, it remained at the shelf break long enough to supply thick turbidites. Minor supply of carbonate-rich sediment from Baffin Bay allows chronologic integration of the Baffin Bay and Labrador Sea detrital carbonate records, which is diachronous with respect to Heinrich events. The asynchrony of the carbonate events implies an open seaway through Davis Strait. Our data suggest that the maximum extent of ice streams in Hudson Strait, Cumberland Sound, and Lancaster Sound was neither synchronous.</p>


1996 ◽  
Vol 23 ◽  
pp. 309-317 ◽  
Author(s):  
Emmanuel Le Meur ◽  
Philippe Huybrechts

The bedrock isostatic response exerts a strong control on ice-sheet dynamics and is therefore always taken into account in ice-sheet models. This paper reviews the various methods normally used in the ice-sheet modelling community to deal with the bedrock response and compares these with a more sophisticated full-Earth model. Each of these bedrock treatments, five in total, is coupled with a three-dimensional thermomechanical ice-sheet model under the same forcing conditions to simulate the Antarctic ice sheet during the last glacial cycle. The outputs of the simulations are compared on the basis of the time-dependent behaviour for the total ice volume and the mean bedrock elevation during the cycle and of the present rate of uplift over Antarctica. This comparison confirms the necessity of accounting for the elastic bending of the lithosphere in order to yield realistic bedrock patterns. It furthermore demonstrates the deficiencies inherent to the diffusion equation in modelling the complex deformation within the mantle. Nevertheless, when characteristic parameters are varied within their range of uncertainty, differences within one single method are often of the same order as those between the various methods. This overview finally attempts to point out the main advantages and drawbacks of each of these methods and to determine which one is most appropriate depending on the specific modelling requirements.


1997 ◽  
Vol 25 ◽  
pp. 259-268 ◽  
Author(s):  
Mikhail Verbitsky ◽  
Barry Saltzman

A three-dimensional (3-D), high-resolution, non-linearly viscous, non-isothermal ice-sheet model is employed to calculate the “present-day” equilibrium regime of the Antarctic ice sheet and its evolution during the last glacial cycle. The model is augmented by an approximate formula for ice-sheet basal temperature, based on a scaling of the thermodynamic equation for the ice flow. Steady-state solutions for both the shape and extent of the areas of basal melting (or freezing) are shown to be in good agreement with those obtained from the solution of the full 3-D thermodynamic equation. The solution for the basal temperature field of the West Antarctic Siple Coast produces areas at the pressure-melting point separated by strips of frozen-to-bed ice, the structure of which is reminiscent of Ice Streams A–E. This configuration appears to be robust, preserving its features in spite of climatic changes during the last glacial cycle. Ice Stream C seems to be more vulnerable to stagnation, switching to a passive mode at least once during the penultimate interglacial. We conjecture that the peculiarities of local topography determine the unique behavior of Ice Stream C: reduced basal stress and, consequently, relatively weak warming due to internal friction and basal sliding is not able to counteract the advective cooling during the periods of increased snowfall rate.


2016 ◽  
Vol 12 (1) ◽  
pp. 115-127 ◽  
Author(s):  
C. Pickler ◽  
H. Beltrami ◽  
J.-C. Mareschal

Abstract. Thirteen temperature–depth profiles ( ≥  1500 m) measured in boreholes in eastern and central Canada were inverted to determine the ground surface temperature histories during and after the last glacial cycle. The sites are located in the southern part of the region that was covered by the Laurentide Ice Sheet. The inversions yield ground surface temperatures ranging from −1.4 to 3.0 °C throughout the last glacial cycle. These temperatures, near the pressure melting point of ice, allowed basal flow and fast flowing ice streams at the base of the Laurentide Ice Sheet. Despite such conditions, which have been inferred from geomorphological data, the ice sheet persisted throughout the last glacial cycle. Our results suggest some regional trends in basal temperatures with possible control by internal heat flow.


1997 ◽  
Vol 43 (144) ◽  
pp. 283-299 ◽  
Author(s):  
Johan Kleman ◽  
Clas Hättestrand ◽  
Ingmar Borgström ◽  
Arjen Stroeven

AbstractThe evolution of ice-sheet configuration and flow pattern in Fennoscandia through the last glacial cycle was reconstructed using a glacial geological inversion model, i.e. a theoretical model that formalises the procedure of using the landform record to reconstruct ice sheets. The model uses mapped flow traces and deglacial melt-water landforms, as well as relative chronologies derived from cross-cutting striae and till lineations, as input data. Flow-trace systems were classified into four types: (i) time-transgressive wet-bed deglacial fans, (ii) time-transgressive frozen-bed deglacial fans, (iii) surge fans, and (iv) synchronous non-deglacial (event) fans. Using relative chronologies and aggregation of fans into glaciologically plausible patterns, a series of ice-sheet Configurations at different time slices was erected. A chronology was constructed through correlation with dated stratigraphical records and proxy data reflecting global ice volume. Geological evidence exists for several discrete ice-sheet configurations centred over the Scandinavian mountain range during the early Weichselian. The build-up of the main Weichselian Fennoscandian ice sheet started at approximately 70 Ka, and our results indicate that it was characterised by an ice sheet with a centre of mass located over southern Norway. This configuration had a flow pattern which is poorly reproduced by current numerical models of the Fennoscandian ice sheet. At the Last Glacial Maximum the main ice divide was located overthe Gulf of Bothnia. A major bend in the ice divide was caused by outflow of ice to the northwest over the lowest part of the Scandinavian mountain chain. Widespread areas of preserved pre-late-Weichselian landscapes indicate that the ice sheet had a frozen-bed core area, which was only partly diminished in size by inward-transgressive wet-bed zones during the decay phase.


2003 ◽  
Vol 37 ◽  
pp. 173-180 ◽  
Author(s):  
Chris Zweck ◽  
Philippe Huybrechts

AbstractMechanisms that determine time-dependent changes of the marine ice margin in dynamic ice-sheet models are important but poorly understood. Here we derive an empirical formulation for changes in the marine extent when modelling the Northern Hemisphere ice sheets over the last glacial cycle in a three-dimensional thermomechanically coupled ice-sheet model. We assume that the strongest control on changes in marine extent is ice calving, and that the variable most crucial to calving is water depth. The empirical marine-extent relationship is tuned so that the major marine-retreat history of the Laurentide and Eurasian ice sheets is modelled accurately in time and space. We find that this empirical treatment relating marine extent to water depth is sufficient to reproduce the observations, and discuss the implications for the physics of marine margin changes and the dynamics of the Northern Hemisphere ice sheets since the Last Glacial Maximum.


1996 ◽  
Vol 23 ◽  
pp. 309-317 ◽  
Author(s):  
Emmanuel Le Meur ◽  
Philippe Huybrechts

The bedrock isostatic response exerts a strong control on ice-sheet dynamics and is therefore always taken into account in ice-sheet models. This paper reviews the various methods normally used in the ice-sheet modelling community to deal with the bedrock response and compares these with a more sophisticated full-Earth model. Each of these bedrock treatments, five in total, is coupled with a three-dimensional thermomechanical ice-sheet model under the same forcing conditions to simulate the Antarctic ice sheet during the last glacial cycle. The outputs of the simulations are compared on the basis of the time-dependent behaviour for the total ice volume and the mean bedrock elevation during the cycle and of the present rate of uplift over Antarctica. This comparison confirms the necessity of accounting for the elastic bending of the lithosphere in order to yield realistic bedrock patterns. It furthermore demonstrates the deficiencies inherent to the diffusion equation in modelling the complex deformation within the mantle. Nevertheless, when characteristic parameters are varied within their range of uncertainty, differences within one single method are often of the same order as those between the various methods. This overview finally attempts to point out the main advantages and drawbacks of each of these methods and to determine which one is most appropriate depending on the specific modelling requirements.


Sign in / Sign up

Export Citation Format

Share Document