scholarly journals Short-period observations of speed, strain and seismicity on Ice Stream B, Antarctica

1993 ◽  
Vol 39 (133) ◽  
pp. 463-470 ◽  
Author(s):  
W. D. Harrison ◽  
K. A. Echelmeyer ◽  
H. Engelhardt

AbstractThe speed of Ice Stream B, Antarctica, was measured twice a day-over a 1 month study period, and found to be steady at about the ±3½% level, the sensitivity of the measurements. The vertical strain was measured at three sites over a 1 year period at 1 h intervals with sensitivities of 2 or 0.2 ppm. The strain rate varied on all time-scales. Events of high strain rate were observed, but never at more than one site at a time. They can probably be understood in terms of local modification of the strain field associated with crevassing. Diurnal variation in strain rate was observed at one and possibly two sites during two summers. The seismicity was measured at all three sites, and diurnal and seasonal variations were prominent at all, the seismicity being much more intense in winter. Several possible causes of the diurnal variations in strain and seismicity are considered: thermal and atmospheric effects, and the effects of tides in the Ross Sea.

1993 ◽  
Vol 39 (133) ◽  
pp. 463-470 ◽  
Author(s):  
W. D. Harrison ◽  
K. A. Echelmeyer ◽  
H. Engelhardt

AbstractThe speed of Ice Stream B, Antarctica, was measured twice a day-over a 1 month study period, and found to be steady at about the ±3½% level, the sensitivity of the measurements. The vertical strain was measured at three sites over a 1 year period at 1 h intervals with sensitivities of 2 or 0.2 ppm. The strain rate varied on all time-scales. Events of high strain rate were observed, but never at more than one site at a time. They can probably be understood in terms of local modification of the strain field associated with crevassing. Diurnal variation in strain rate was observed at one and possibly two sites during two summers. The seismicity was measured at all three sites, and diurnal and seasonal variations were prominent at all, the seismicity being much more intense in winter. Several possible causes of the diurnal variations in strain and seismicity are considered: thermal and atmospheric effects, and the effects of tides in the Ross Sea.


1988 ◽  
Vol 11 ◽  
pp. 210 ◽  
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams. Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


1988 ◽  
Vol 11 ◽  
pp. 211-211
Author(s):  
P. L. Vorriberger ◽  
I. M. Whillans

Crevasses are subject to rotation and bending according to the velocity field through which they travel. The objective of this study is to determine to what extent the velocity field can be inferred from measurements of the resulting shapes of crevasses.A quantitative model of crevasse deformation is developed, based on the following assumptions: (1) each crevasse is assumed to open perpendicularly to the principal extensional regional strain-rate, (2) the crevasse forms when the principal extensional strain-rate exceeds some specified critical value, and (3) velocity gradients are constant over the area of interest. The first two assumptions are reasonable and the third is necessary for an analytic solution of flow trajectories. The crevasse is carried along, rotated, and bent, and may continue to increase in length. Calculations are made for different velocity fields, and velocity fields are sought that produce crevasses similar to those found in three different areas of Ice Stream B.Hook-shaped crevasses occur just outside the chaotic zone at the ice-stream margin. These are similar to the curved marginal crevasses often found in the accumulation zone of valley glaciers. They are successfully modelled by combining strong lateral shear with slow flow of ice from the ice ridge into the ice stream. The curvature at the most sharply bent part of the crevasse is found to be a useful measure and, together with measurements of ice flow from the ridge, can be used to infer the rate of lateral shear. This rate compares favorably with the single measurement obtained so far (Bindschadler and others 1987).A pattern of splaying crevasses develops on the ice stream down-glacier of its narrowest part. These crevasses are similar to longitudinal crevasses found in the ablation zone of many valley glaciers. Models with linear variation in velocity cannot reproduce the observed pattern. However, we have been able to simulate higher-order variations by joining together successive linear models. The observed crevasse pattern is successfully produced if the side shearing varies as the third power of distance from the center of symmetry of the crevasse pattern. Such a variation is expected for a linear gradient in side-drag stress and a third-power constitutive relation for ice. The observed crevasse pattern is thus consistent with side drag varying linearly across the ice stream.The third example is the rotation of transverse crevasses, which occur in trains on the main part of the ice stream. This rotation is due to side shearing but its magnitude is also affected by turning of the flow line and by normal strain-rates. It is therefore possible to reproduce the observed pattern for a wide range of velocity fields, and so measurements of the orientation of transverse crevasses provide only an upper limit on side shearing within the main body of the ice stream.There are many other examples of crevasse patterns on Ice Stream Β and on other glaciers that can be studied in this way. We propose that important constraints can be placed on velocity gradients and on the flow dynamics by using quantitative modelling of crevasse shapes.


1997 ◽  
Vol 43 (145) ◽  
pp. 415-426 ◽  
Author(s):  
Miriam Jackson ◽  
Barclay Kamb

AbstractTo ascertain whether the velocity of Ice Stream B, West Antarctica, may be controlled by the stresses in its marginal shear zones (the “Snake” and the “Dragon”), we undertook a determination of the marginal shear stress in the Dragon near Camp Up B by using ice itself as a stress meter. The observed marginal shear strain rate of 0.14 a−1is used to calculate the marginal shear stress from the flow law of ice determined by creep tests on ice cores from a depth of 300 m in the Dragon, obtained by using a hot-water ice-coring drill. The test-specimen orientation relative to the stress axes in the tests is chosen on the basis ofc-axis fabrics so that the test applies horizontal shear across vertical planes parallel to the margin. The resulting marginal shear stress is (2.2 ± 0.3) × 105Pa. This implies that 63–100% of the ice stream’s support against gravitational loading comes from the margins and only 37–0% from the base, so that the margins play an important role in controlling the ice-stream motion. The marginal shear-stress value is twice that given by the ice-stream model of Echelmeyer and others (1994) and the corresponding strain-rate enhancement factors differ greatly (E≈ 1–2 vs 10–12.5). This large discrepancy could be explained by recrystallization of the ice during or shortly after coring. Estimates of the expected recrystallization time-scale bracket the ∼1 h time-scale of coring and leave the likelihood of recrystallization uncertain. However, the observed two-maximum fabric type is not what is expected for annealing recrystallization from the sharp single-maximum fabric that would be expected in situ at the high shear strains involved (γ ∼ 20). Experimental data from Wilson (1982) suggest that, if the core did recrystallize, the prior fabric was a two-maximum fabric not substantially different from the observed one, which implies that the measured flow law and derived marginal shear stress are applicable to the in situ situation. These issues need to be resolved by further work to obtain a more definitive observational assessment of the marginal shear stress.


1988 ◽  
Vol 11 ◽  
pp. 210-210
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams.Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


1990 ◽  
Vol 36 (122) ◽  
pp. 3-10 ◽  
Author(s):  
P.L. Vornberger ◽  
I.M. Whillans

AbstractCrevasses, once formed, are subject to rotation and bending according to the velocity field through which they travel. Because of this, crevasse shapes can be used to infer something about the velocity field of a glacier. This is done using a model in which each crevasse opens perpendicularly to the principal extensional strain-rate, when that strain-rate exceeds some specified critical value, and is then deformed according to the same velocity gradients that formed the crevasse. This model describes how crevasses are formed, translated, rotated, bent, and lengthened.Velocity fields are sought for which calculations produce crevasses approximating those found in three example areas on Ice Stream B, Antarctica. The first example is the hook-shaped crevasses that occur just outside the chaotic shear zone at the ice-stream margin. They are used to infer a rate of lateral shearing, and side drag. The second example, a pattern of splaying crevasses, is satisfactorily simulated by a model with side-drag stress varying linearly across the ice stream. This confirms that this region is restrained almost entirely by side drag. The third example is transverse crevasses and their change in orientation, but many different velocity fields can produce the observed pattern. Of these three examples, the shapes of hook-shaped marginal crevasses and splaying crevasses can provide useful information whereas transverse crevasses are less helpful.


2009 ◽  
Vol 283-286 ◽  
pp. 458-463 ◽  
Author(s):  
N.H. Abd Aziz ◽  
Iswadi Jauhari ◽  
H.A. Mohd Yusof ◽  
Nor Wahida Ahamad

It was reported that superplastic boronizing process (SPB) provides a much faster boronizing rate than the conventional boronizing process (CB). This process was conducted on duplex stainless steel (DSS) which exhibit superplasticity. The study concentrated on the effect of strain rate and compression strain on SPB. The process was conducted under four different strain rates and three diferent strains condition. Boronizing was successfully conducted with the best result obtained under the high strain rate range of 5 x 10-5 s-1 to 1 x 10-3 s-1 which is associated with the superplastic region. Through SPB, movement of atoms into the specimen was highly accelerated by the grain boundary sliding process leading to a formation of thick and hard boronized layer in extraordinarily short period of time.


1997 ◽  
Vol 43 (145) ◽  
pp. 415-426 ◽  
Author(s):  
Miriam Jackson ◽  
Barclay Kamb

AbstractTo ascertain whether the velocity of Ice Stream B, West Antarctica, may be controlled by the stresses in its marginal shear zones (the “Snake” and the “Dragon”), we undertook a determination of the marginal shear stress in the Dragon near Camp Up B by using ice itself as a stress meter. The observed marginal shear strain rate of 0.14 a−1is used to calculate the marginal shear stress from the flow law of ice determined by creep tests on ice cores from a depth of 300 m in the Dragon, obtained by using a hot-water ice-coring drill. The test-specimen orientation relative to the stress axes in the tests is chosen on the basis ofc-axis fabrics so that the test applies horizontal shear across vertical planes parallel to the margin. The resulting marginal shear stress is (2.2 ± 0.3) × 105Pa. This implies that 63–100% of the ice stream’s support against gravitational loading comes from the margins and only 37–0% from the base, so that the margins play an important role in controlling the ice-stream motion. The marginal shear-stress value is twice that given by the ice-stream model of Echelmeyer and others (1994) and the corresponding strain-rate enhancement factors differ greatly (E≈ 1–2 vs 10–12.5). This large discrepancy could be explained by recrystallization of the ice during or shortly after coring. Estimates of the expected recrystallization time-scale bracket the ∼1 h time-scale of coring and leave the likelihood of recrystallization uncertain. However, the observed two-maximum fabric type is not what is expected for annealing recrystallization from the sharp single-maximum fabric that would be expected in situ at the high shear strains involved (γ ∼ 20). Experimental data from Wilson (1982) suggest that, if the core did recrystallize, the prior fabric was a two-maximum fabric not substantially different from the observed one, which implies that the measured flow law and derived marginal shear stress are applicable to the in situ situation. These issues need to be resolved by further work to obtain a more definitive observational assessment of the marginal shear stress.


1990 ◽  
Vol 36 (122) ◽  
pp. 3-10 ◽  
Author(s):  
P.L. Vornberger ◽  
I.M. Whillans

AbstractCrevasses, once formed, are subject to rotation and bending according to the velocity field through which they travel. Because of this, crevasse shapes can be used to infer something about the velocity field of a glacier. This is done using a model in which each crevasse opens perpendicularly to the principal extensional strain-rate, when that strain-rate exceeds some specified critical value, and is then deformed according to the same velocity gradients that formed the crevasse. This model describes how crevasses are formed, translated, rotated, bent, and lengthened.Velocity fields are sought for which calculations produce crevasses approximating those found in three example areas on Ice Stream B, Antarctica. The first example is the hook-shaped crevasses that occur just outside the chaotic shear zone at the ice-stream margin. They are used to infer a rate of lateral shearing, and side drag. The second example, a pattern of splaying crevasses, is satisfactorily simulated by a model with side-drag stress varying linearly across the ice stream. This confirms that this region is restrained almost entirely by side drag. The third example is transverse crevasses and their change in orientation, but many different velocity fields can produce the observed pattern. Of these three examples, the shapes of hook-shaped marginal crevasses and splaying crevasses can provide useful information whereas transverse crevasses are less helpful.


1993 ◽  
Vol 39 (133) ◽  
pp. 437-446 ◽  
Author(s):  
I. M. Whillans ◽  
C.J. Van der Veen

AbstractPatterns of strain rate and slope on the ice streams are unusual. They cannot be accounted for in the usual way as due to standing waves in ice flow over a basal obstruction to flow (such as a sticky spot). The features are studied using the force-budget technique. The conventional flow law is used, together with measurements of surface strain rate and shape of the glacier, to compute basal drag. The results for Ice Stream C are as expected, in that the drag varies from site to site but is directed inland, restraining the flow. The calculated drag at the base of Ice Stream B, on the other hand, is in places such that it acts to propel the glacier forward. This result is untenable. Either the conventional flow law is not applicable to Ice Stream Β or there are large spatial variations in ice stiffness, perhaps associated with foliation, or both.


Sign in / Sign up

Export Citation Format

Share Document