scholarly journals Seasonal variation in the apparent height of the East Antarctic ice sheet

1997 ◽  
Vol 24 ◽  
pp. 191-198 ◽  
Author(s):  
D. Yi ◽  
C. R. Bentley ◽  
M. D. Stenoien

A satellite radar altimeter can be used to monitor surface elevation change over polar ice sheets. Thirty-five months of Geosat Exact Repeat Mission (ERM) data from November 1986 to September 1989 over a section of East Antarctica (69–72.1 ∘S, 80–140∘ E) have been used in this study. A model that considers both surface and volume scattering was used to retrack the altimeter waveforms. Surface elevations for each month after the first three were compared to the average elevations for the first 3 months through a crossover method. The averaged crossover elevation difference changed with time in a way that suggests a yearly cycle in surface elevation. The average amplitude of the cycle is about 0.6 m. We have been unable to find any satisfactory explanation for the observed changes, in terms of either sources of error or contributors to real surface-height changes. We strongly suspect that orbit error plays a major role in producing the variations, although we know of no quantitatively satisfactory source of a quasi-seasonal variation in orbit error. Other possible contributors include a real seasonal variation in accumulation rate, seasonal changes in the delay of the radar signal as it propagates through the atmosphere, unmodeled variations in the depth of penetration of the radar pulse into the firn, changes in the thickness of the ice and the firn zone in response to seasonal variations in pressure and temperature, and the inverted barometer effect. Even though we do not know the cause of the variations, the results show the importance of comparing elevations at the same time of year for observations that are not continuous, while at the same time showing that even annually spaced measurements may not be free of substantial errors associated with interannual variability. The quasi-periodic variations obscure any evidence of a moderate secular change in surface height, if there is one, but a dramatic lowering at rates approaching 1 ma–1, such as are known elsewhere in Antarctica, can definitely be ruled out.

1997 ◽  
Vol 24 ◽  
pp. 191-198 ◽  
Author(s):  
D. Yi ◽  
C. R. Bentley ◽  
M. D. Stenoien

A satellite radar altimeter can be used to monitor surface elevation change over polar ice sheets. Thirty-five months of Geosat Exact Repeat Mission (ERM) data from November 1986 to September 1989 over a section of East Antarctica (69–72.1 ∘S, 80–140∘ E) have been used in this study. A model that considers both surface and volume scattering was used to retrack the altimeter waveforms. Surface elevations for each month after the first three were compared to the average elevations for the first 3 months through a crossover method. The averaged crossover elevation difference changed with time in a way that suggests a yearly cycle in surface elevation. The average amplitude of the cycle is about 0.6 m. We have been unable to find any satisfactory explanation for the observed changes, in terms of either sources of error or contributors to real surface-height changes. We strongly suspect that orbit error plays a major role in producing the variations, although we know of no quantitatively satisfactory source of a quasi-seasonal variation in orbit error. Other possible contributors include a real seasonal variation in accumulation rate, seasonal changes in the delay of the radar signal as it propagates through the atmosphere, unmodeled variations in the depth of penetration of the radar pulse into the firn, changes in the thickness of the ice and the firn zone in response to seasonal variations in pressure and temperature, and the inverted barometer effect. Even though we do not know the cause of the variations, the results show the importance of comparing elevations at the same time of year for observations that are not continuous, while at the same time showing that even annually spaced measurements may not be free of substantial errors associated with interannual variability. The quasi-periodic variations obscure any evidence of a moderate secular change in surface height, if there is one, but a dramatic lowering at rates approaching 1 ma–1, such as are known elsewhere in Antarctica, can definitely be ruled out.


2003 ◽  
Vol 37 ◽  
pp. 233-238 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally ◽  
Helen Cornejo ◽  
Donghui Yi

AbstractComparison of the distribution of seasonal variations in surface elevation derived from a firn-densification–elevation model with observed variations derived from ERS-1/-2 satellite radar altimetry shows close similarity in the patterns of the amplitude of the variations over the North Greenland ice sheet. The amplitudes of the seasonal variations decrease from west to east and from south to north, determined by the accumulation rate and the surface-temperature distribution pattern. Several methods of estimating the amplitude of the seasonal variation in the observations are compared, including the use of a three-frequency sinusoidal function derived from the modeled seasonal variation that is asymmetric. The resulting correlation coefficient between the observed amplitude, estimated with the three-frequency function, and the modeled amplitude is 0.66 and the slope is 0.7. Residual differences may be caused by interannual variability in accumulation and temperature and other approximations in the model.


2000 ◽  
Vol 30 ◽  
pp. 76-82 ◽  
Author(s):  
Ute Christina Herzfeld ◽  
Ralf Stosius ◽  
Marcus Schneider

AbstractThe Antarctic ice sheet plays a major role in the global system and the large ice streams discharging into the circumpolar sea represent its gateways to the world’s oceans. Satellite radar-altimeter data provide an opportunity for mapping surface elevation at kilometer resolution with meter accuracy. Geostatistical methods have been developed to accomplish this. We distinguish two goals in mapping the Antarctic ice surface: (a) construction of a continent-wide atlas of maps and digital terrain models, and (b) calculation of maps and models suitable for the study of individual glaciers, ice streams and ice shelves. The atlases consist of accurate maps of ice-surface elevation compiled from Seasat, Geosat and ERS-1 altimeter data, covering all of Antarctica surveyed by Geosat (to 72.1° S) and by ERS-1 (to 81.5° S). With a 3 km grid they are the highest-resolution maps available today with continent-wide coverage. The resolution permits geophysical study and facilitates monitoring of changes in ice-surface elevation and changes in flux across the ice-ocean boundary, which is essential for monitoring sea-level changes.


1979 ◽  
Vol 24 (90) ◽  
pp. 491-493 ◽  
Author(s):  
H. Jay Zwally ◽  
R. L. Brooks ◽  
H. Ray Stanley ◽  
W. J. Campbell

Abstract A major question in ice-sheet dynamics is the state of balance between the net mass input and ice flow. Since an imbalance produces a change in surface elevation, the state of balance can be studied by monitoring the elevation, and this has been accomplished by surface-leveling techniques in a few locations. Due to the requirement for accurate and repetitive measurements over large areas, it is not practical to determine the status of balance of an entire ice sheet or even a major drainage basin by conventional techniques. Now, recent results from satellite-borne radar altimeter measurements over the Greenland ice sheet demonstrate the feasibility of accurately measuring and monitoring the topography of large ice masses. The application of this new technique offers the possibility of making a meaningful mass-balance determination and for detecting actual or potential ice-sheet surges.


1979 ◽  
Vol 24 (90) ◽  
pp. 491-493
Author(s):  
H. Jay Zwally ◽  
R. L. Brooks ◽  
H. Ray Stanley ◽  
W. J. Campbell

AbstractA major question in ice-sheet dynamics is the state of balance between the net mass input and ice flow. Since an imbalance produces a change in surface elevation, the state of balance can be studied by monitoring the elevation, and this has been accomplished by surface-leveling techniques in a few locations. Due to the requirement for accurate and repetitive measurements over large areas, it is not practical to determine the status of balance of an entire ice sheet or even a major drainage basin by conventional techniques. Now, recent results from satellite-borne radar altimeter measurements over the Greenland ice sheet demonstrate the feasibility of accurately measuring and monitoring the topography of large ice masses. The application of this new technique offers the possibility of making a meaningful mass-balance determination and for detecting actual or potential ice-sheet surges.


2019 ◽  
Vol 13 (9) ◽  
pp. 2511-2535 ◽  
Author(s):  
Wael Abdel Jaber ◽  
Helmut Rott ◽  
Dana Floricioiu ◽  
Jan Wuite ◽  
Nuno Miranda

Abstract. The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a−1 for epoch 1 and -5.60±0.74 km3 a−1 for epoch 2, while for SPI these are -14.87±0.52 km3 a−1 for epoch 1 and -11.86±1.99 km3 a−1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a−1 for epoch 1 and 0.043±0.005 mm a−1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.


2015 ◽  
Vol 9 (3) ◽  
pp. 2821-2865 ◽  
Author(s):  
L. Gray ◽  
D. Burgess ◽  
L. Copland ◽  
M. N. Demuth ◽  
T. Dunse ◽  
...  

Abstract. We show that the CryoSat-2 radar altimeter can provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly time scales. Changing conditions, however, can lead to a varying bias between the elevation estimated from the radar altimeter and the physical surface due to changes in the contribution of subsurface to surface backscatter. Under melting conditions the radar returns are predominantly from the surface so that if surface melt is extensive across the ice cap estimates of summer elevation loss can be made with the frequent coverage provided by CryoSat-2. For example, the average summer elevation decreases on the Barnes Ice Cap, Baffin Island, Canada were 2.05 ± 0.36 m (2011), 2.55 ± 0.32 m (2012), 1.38 ± 0.40 m (2013) and 1.44 ± 0.37 m (2014), losses which were not balanced by the winter snow accumulation. As winter-to-winter conditions were similar, the net elevation losses were 1.0 ± 0.2 m (winter 2010/2011 to winter 2011/2012), 1.39 ± 0.2 m (2011/2012 to 2012/2013) and 0.36 ± 0.2 m (2012/2013 to 2013/2014); for a total surface elevation loss of 2.75 ± 0.2 m over this 3 year period. In contrast, the uncertainty in height change results from Devon Ice Cap, Canada, and Austfonna, Svalbard, can be up to twice as large because of the presence of firn and the possibility of a varying bias between the true surface and the detected elevation due to changing year-to-year conditions. Nevertheless, the surface elevation change estimates from CryoSat for both ice caps are consistent with field and meteorological measurements. For example, the average 3 year elevation difference for footprints within 100 m of a repeated surface GPS track on Austfonna differed from the GPS change by 0.18 m.


Sign in / Sign up

Export Citation Format

Share Document