Pengenalan Finger Vein Menggunakan Local Line Binary Pattern dan Learning Vector Quantization

2018 ◽  
Vol 9 (2) ◽  
pp. 52-57
Author(s):  
Jayanti Yusmah Sari ◽  
Rizal Adi Saputra

This research proposes finger vein recognition system using Local Line Binary Pattern (LLBP) method and Learning Vector Quantization (LVQ). LLBP is is the advanced feature extraction method of Local Binary Pattern (LBP) method that uses a combination of binary values from neighborhood pixels to form features of an image. The straight-line shape of LLBP can extract robust features from the images with unclear veins, it is more suitable to capture the pattern of vein in finger vein image. At the recognition stage, LVQ is used as a classification method to improve recognition accuracy, which has been shown in earlier studies to show better results than other classifier methods. The three main stages in this research are preprocessing, feature extraction using LLBP method and recognition using LVQ. The proposed methodology has been tested on the SDUMLA-HMT finger vein image database from Shandong University. The experiment shows that the proposed methodology can achieve accuracy up to 90%. Index Terms—finger vein recognition, Learning Vector Quantization, LLBP, Local Line Binary Pattern, LVQ.

2020 ◽  
Vol 9 (3) ◽  
pp. 397
Author(s):  
Ahmed A. Mustafa ◽  
Ahmed AK. Tahir

This paper aims at improving the performance of finger-vein recognition system using a new scheme of image preprocessing. The new scheme includes three major steps, RGB to Gray conversion, ROI extraction and alignment and ROI enhancement. ROI extraction and alignment includes four major steps. First, finger-vein boundaries are detected using two edge detection masks each of size (4 x 6). Second, the correction for finger rotation is done by calculating the finger base line from the midpoints between the upper and lower boundaries using least square method. Third, ROI is extracted by cropping a rectangle around the center of the finger-vein which is determined using the first and second invariant moments. Forth, the extracted ROI is normalized to a unified size of 192 x 64 in order to compensate for scale changes. ROI enhancement is done by applying the technique of Contrast-Limited Adaptive Histogram Equalization (CLAHE), followed by median and modified Gaussian high pass filters. The application of the given preprocessing scheme to a finger-vein recognition system revealed its efficiency when used with different methods of feature extractors and with different types of finger-vein database. For the University of Twente Finger Vascular Pattern (UTFVP) database, the achieved Identification Recognition Rates (IRR) for identification mode using three feature extraction methods Local Binary Pattern (LBP), Local Directional Pattern (LDP) and Local Line Binary Pattern (LLBP) are (99.79, 99.86 and 99.86) respectively, while the achieved Equal Error Rates (EER) for verification mode for the same feature extraction methods are (0.139, 0.069 and 0.035). For the Shandong University Machine Learning and Applications - Homologous Multi-modal Traits (SDUMLA-HMT) database, the achieved Identification Recognition Rates (IRR) for identification mode using three feature extraction methods LBP, LDP and LLBP are (99.57, 99.73 and 99.65) respectively, while the achieved Equal Error Rates (EER) for verification mode for the same feature extraction methods are (0.419, 0.262 and 0.341). These results outrage those of the previous state-of-art methods.


2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
George K. Sidiropoulos ◽  
Polixeni Kiratsa ◽  
Petros Chatzipetrou ◽  
George A. Papakostas

This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human’s identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 524
Author(s):  
Kyoung Jun Noh ◽  
Jiho Choi ◽  
Jin Seong Hong ◽  
Kang Ryoung Park

The conventional finger-vein recognition system is trained using one type of database and entails the serious problem of performance degradation when tested with different types of databases. This degradation is caused by changes in image characteristics due to variable factors such as position of camera, finger, and lighting. Therefore, each database has varying characteristics despite the same finger-vein modality. However, previous researches on improving the recognition accuracy of unobserved or heterogeneous databases is lacking. To overcome this problem, we propose a method to improve the finger-vein recognition accuracy using domain adaptation between heterogeneous databases using cycle-consistent adversarial networks (CycleGAN), which enhances the recognition accuracy of unobserved data. The experiments were performed with two open databases—Shandong University homologous multi-modal traits finger-vein database (SDUMLA-HMT-DB) and Hong Kong Polytech University finger-image database (HKPolyU-DB). They showed that the equal error rate (EER) of finger-vein recognition was 0.85% in case of training with SDUMLA-HMT-DB and testing with HKPolyU-DB, which had an improvement of 33.1% compared to the second best method. The EER was 3.4% in case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB, which also had an improvement of 4.8% compared to the second best method.


Author(s):  
Dawlat Mustafa Sulaiman ◽  
Adnan Mohsin Abdulazeez ◽  
Habibollah Haron

Today, finger vein recognition has a lot of attention as a promising approach of biometric identification framework and still does not meet the challenges of the researchers on this filed. To solve this problem, we propose s double stage of feature extraction schemes based localized finger fine image detection. We propose Globalized Features Pattern Map Indication (GFPMI) to extract the globalized finger vein line features basede on using two generated vein image datasets: original gray level color, globalized finger vein line feature, original localized gray level image, and the colored localized finger vein images. Then, two kinds of features (gray scale and texture features) are extracted, which tell the structure information of the whole finger vein pattern in the whole dataset. The recurrent based residual neural network (RNN) is used to identify the finger vein images. The experimental show that the localized colored finger vein images based globalized feature extraction has achieved the higher accuracy (93.49%) while the original image dataset achieved less accuracy by (69.86%).


2021 ◽  
pp. 287-294
Author(s):  
Zhenxiang Chen ◽  
Wangwang Yu ◽  
Haohan Bai ◽  
Yongjie Li

Sign in / Sign up

Export Citation Format

Share Document