scholarly journals DEVICE-TO-DEVICE (D2D) COMMUNICATION PADA JARINGAN SELULAR

TEKNOKOM ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 47-56
Author(s):  
R. Purnama

Didalam sebuah sistem telekomunikasi selular yang konvensional, perangkat-perangkat pengguna(UE) adalah tidak dimungkinkan untuk saling berkomunikasi secara langsung (directcommunication) didalam bandwidth selular yang berlisensi. Semua komunikasi yang berlangsungharus melalui eNB atau base station (BS) sebagai jaringan inti (core network). Suatu kebutuhanuntuk meningkatkan kapasitas jaringan dalam memenuhi permintaan-permintaan yang terusberkembang dari para pengguna telah membawa pada evolusi jaringan-jaringan telekomunikasiselular dari generasi pertama (1G) hingga generasi ke lima (5G). Sebuah metode baru D2DCommunication diperkenalkan dalam standar telekomunikasi selular konvensional terbaru LTE.Metode D2D Communication ini diantaranya diterapkan pada sistem radio keselamatan publik(public safety radio system). Dan saat ini, sistem radio keselamatan publik yang berbasis LTEtersebut sedang dipertimbangkan untuk digunakan karena dapat mengurangi biaya-biayaoperasional dan pembangunan jaringan. Fungsi-fungsi komunikasi secara langsung dengan membypass eNB (tanpa melibatkan eNB) telah diperkenalkan didalam standar spesifikasi 3GPP Release12 LTE-Advanced untuk sistem radio keselamatan publik sehingga komunikasi-komunikasi dapatdisediakan bahkan jika sebuah eNB mengalami down (failure atau kerusakan) karena adanya suatubencana dengan skala yang besar, gempa bumi atau tsunami dsb. Fungsi-fungsi Device Discoveryyang memungkinkan D2D komersial juga diperkenalkan pada release 12 tersebut.

Author(s):  
Rajarshi Sanyal ◽  
Ramjee Prasad

The key attributes envisioned for LTE-Advanced pertaining to 5G Networks are ubiquitous presence, device convergence, massive machine connectivity, ultrahigh throughput and moderated carbon footprint of the network and the user equipment actuated by offloading cellular data traffic and by enabling device to device communication. The present method of mobility management and addressing as the authors have foreseen in LTE Advanced can solve some issues of cellular traffic backhaul towards the access and core network by actuating a local breakout and enabling communication directly between devices. But most of the approaches look forward towards an enhancement in the radio resource allocation process and prone to interference. Besides, most of these proposals delve in Device to Device (D2D) mode initiation from the device end, but no research has so far addressed the concept of a network initiated D2D process, which can optimise the channel utilisation and network operations further. In their attempt to knot these loose ends together, the auhtors furnish the concept of WISDOM (Wireless Innovative System for Dynamic Operating Mega communications) (Badoi Cornelia-I., Prasad N., Croitoru V., Prasad R., 2011) (Prasad R., June 2013) (Prasad R.,December 2013) and SMNAT (Sanyal, R., Cianca, E. and Prasad,R.,2012a) () () () (. Further, the authors explore how SMNAT (Smart Mobile Network Access Topology) can engage with WISDOM in cooperative communication to actuate D2D communication initiated by the device or the network. WISDOM is an architectural concept for 5G Networks based on cognitive radio approach. The cognition, sustained by adaptation techniques, is a way to provide communication, convergence, connectivity, co-operation, and content, anytime and anywhere. Though D2D communication using a dedicated spectrum in multi cell environment is possible through advanced network coding or by use of fractional frequency reuse, but physical proximity of the 2 devices is still a key requisite. In this paper the authors will discuss SMNAT which employs physical layer addressing to enable D2D communication agnostic to the spatial coordinates of the devices.


2020 ◽  
Vol 10 (12) ◽  
pp. 4409
Author(s):  
Wei Kuang Lai ◽  
Chin-Shiuh Shieh ◽  
Fu-Sheng Chou ◽  
Chia-Yu Hsu ◽  
Meng-Han Shen

This study addresses the handover management issue for Device-to-Device communication in fifth-generation (5G) networks. The Third Generation Partnership Project (3GPP) drafted a standard for proximity services (ProSe), also named device-to-device (D2D) communication, which is a promising technology in offering higher throughput and lower latency services to end users. Handover is an essential issue in wireless mobile networks due to the mobility of user equipment (UE). Specifically, we need to transfer an ongoing connection from an old E-UTRAN Node B (eNB) to a new one, so that the UE can retain its connectivity. In the data plane, both parties of a D2D pair can communicate directly with each other without the involvement of the base station. However, in the control plane, devices must be connected to the eNB for tasks such as power control and resource allocation. In the current standard of handover scheme, the number of unnecessary handovers would be increased by the effect of shadowing fading on two devices. More important, the handover mechanism for D2D pairs is not standardized yet. LTE-A only considers the handover procedure of a single user. Therefore, when a D2D pair moves across cell boundaries, the control channels of the two UEs may connect to different base stations and result in increased latency due to the exchange of D2D related control messages. Hence, we propose a handover management scheme for D2D communication to let both parties of a D2D pair handover to the same destination eNB at the same time. By doing so, the number of unnecessary handovers, as well as the handover latency, can be reduced. In the proposed method, we predict the destination eNB of D2D users based on their movements and the received signal characteristics. Subsequently, we make a handover decision for each D2D pair by jointly factoring in the signal quality and connection stability. Expected improvement can be attained, as revealed in the simulation. Unnecessary handover can be avoided. Consequently, both UEs of a D2D pair reside in the same cell and, therefore, result in increased throughput and decreased delay.


Author(s):  
Chun-Chuan Yang ◽  
Jeng-Yueng Chen ◽  
Yi-Ting Mai ◽  
Yi-Chih Wang

LTE-Advanced (LTE-A) offloading is concerned about alleviating traffic congestion for the LTE-A network, which includes the core network and the radio access network (RAN). Due to the scarcity of the radio resource, offloading for the LTE-A RAN is more critical, for which an efficient way is to integrate Wi-Fi with LTE-A to form a heterogeneous RAN environment. An LTE-A UE (User Equipment) with the wi-fi interface can therefore access the Internet via an LTE-A base station of Evolved Node B (eNB) or a wi-fi Access Point (AP). In this paper, wireless network selection for UEs with delay-sensitive traffic in the heterogeneous RAN of LTE-A and wi-fi is addressed. Based on the queueing model of M/G/1, a novel network selection and offloading scheme, namely Delay-Sensitive Network Selection and Offloading (DSO), is proposed. The average system time at LTE-A eNBs and wi-fi APs calculated according to M/G/1 is used for network selection as well as offloading operations in DSO. The benefit of DSO in terms of satisfying the delay budget of UEs and load balancing is demonstrated by the simulation study.


Author(s):  
Naveen Gupta ◽  
Vivek Ashok Bohara ◽  
Vibhutesh Kumar Singh

In this chapter, the authors present the simulation and measurement results for direct and single hop device-to-device (D2D) communication protocols. The measurement results will further argument the development of D2D communication and will also help in understanding some of the intricate design issues which were overlooked during theoretical or computer simulations. The measurements were taken on a proof-of-concept experimental testbed by emulating a cellular scenario in which a Base station (BS) and many D2D enabled devices coordinate and communicate with each other to select an optimum communication range, transmit parameters, etc. A testbed (Multi-carrier) was developed using Software Defined radio which incorporates the concept of Spectrum Sharing through static sub-carrier allocation to D2D user by cellular system which will eventually enhance the performance of cellular as well as D2D communication system. Our purposed and deployed protocol have shown significant improvement in received Signal to Noise Ratio (SNR) as compared to conventional direct transmission schemes.


Device to Device (D2D) communication in cellular networks is defined as direct communication between two mobile users without traversing the data through the base station (BS). Indoor D2D communication refers to transmission between two users within a building or in a closed space. Resource allocation is a plan for using available resources efficiently and the resources are allocated for optimal functioning of the D2D network. The algorithms for optimizing D2D network is characterized by the parameters like matching network, noise, throughput maximization and few more. In this work, our aim is to develop resource allocation algorithms for indoor D2D communication. An efficient resource allocation algorithm for device to device communication and a suitable frequency allocation technique in order to avoid call blockage should be designed. The main challenge in this work is to allocate resources to D2D users without affecting cellular users efficiency. These optimal resource allocation works efficiently and also adapt to time and location variation. The process involved in each algorithm is elaborated.


Author(s):  
Hanan H. Hussein ◽  
Hussein A. Elsayed ◽  
Sherine M. Abd El-kader

5G is the next step in the evolution of mobile communication. The evolving 5G cellular wireless networks are envisioned to provide higher data rates, enhanced end-user quality-of-experience (QoE), reduced end-to-end latency, and lower energy consumption. Device to device (D2D) is one of the key technologies provided to enhance 5G performance. Direct communication between two devices without involvement of any central point (i.e., base station) is defined as device to device (D2D) communication. It is a recommended technique to enhance the network performance of 5G in terms of energy efficiency, throughput, latency, and spectrum utilization. In this chapter, the authors provide a detailed survey on the integration of D2D communication into cellular network especially 5G network. The survey highlights the potential advantages; classifications and application for D2D technology have been indicated. Main D2D standards have been presented. Finally, the chapter addresses main topics that could be related to D2D and indicates all major possible challenges that face most researchers.


Device-to-Device (D2D) communication is used for cellular networks. D2d communication is the direct communication from one mobile station to other mobile station, without the involvement of the base station. By using the device to device communication lesser delay is possible. By using d2d communication along with 5G network improves the bit rate. 5G network provides the communication with more data rate and lesser delay. Security and privacy are very important for communication. In this paper security and privacy requirements of device to device communication and physical layer privacy solutions are discussed.


2016 ◽  
Vol 8 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Magri Hicham ◽  
Noreddine Abghour ◽  
Mohammed Ouzzif

Sign in / Sign up

Export Citation Format

Share Document