scholarly journals Experimental study of shear failure characteristic of spread foundations

2016 ◽  
Vol 2 (38) ◽  
pp. 1358-1361
Author(s):  
Yan-jing Teng ◽  
Rong-nian Li
1997 ◽  
Vol 8 (2) ◽  
pp. 39-49
Author(s):  
Yasuaki Goto ◽  
Osamu Joh ◽  
Takuji Shibata

2017 ◽  
Vol 902 ◽  
pp. 33-40
Author(s):  
Cong Thuat Dang ◽  
Ngoc Hieu Dinh

Old reinforced concrete buildings constructed around 1980’s in many developing countries have been designed against mainly gravity load. Beam-column joints in these buildings contain slightly or no shear reinforcement inside the panel zones due to the construction convenience, and are vulnerable to shear failure in beam-column joints under the action of earthquake loads, especially for the exterior beam-column joints. This experimental study aimed to investigate the seismic performance of five half-scale exterior beam-column joints simulating the joints in existing reinforced-concrete buildings with non-shear hoop details. The test results showed that the structural performances of the beam-column joints under earthquake including failure mode, load-drift ratio relationship, shear strain of the joints and energy dissipation are strongly affected by the amount of longitudinal reinforcing bars of beams.


2017 ◽  
Vol 36 (12) ◽  
pp. 878-888 ◽  
Author(s):  
Xiaopei Wang ◽  
Deng’an Cai ◽  
Chao Li ◽  
Fangzhou Lu ◽  
Yu Wang ◽  
...  

An experimental study on the effects of braided processes on the torsional strength, torsional modulus and failure modes of the three-dimensional braided composite tubes are presented. Based on the movement of carries, the yarn traces of three-dimensional braided composite tubes are analyzed systematically. Four different three-dimensional braided composite tubes are formed by resin transfer molding, and a number of torsional tests are performed respectively using a special test device. It is found that the torsional strength of three-dimensional five-directional braided composite tubes is higher than others, while the torsional modulus of three-dimensional multi-layer wrapping braided composite tubes is the highest. Furthermore, the damage behaviors of 3D braided composite tubes are significantly influenced by braiding process. One focus is to evaluate the damage mechanism of three-dimensional braided composite tubes by cutting the specimens and using scanning electron microscopy. Under torsional load, three-dimensional five-directional braided composite tubes and three-dimensional surface-core five-directional braided composite tubes are fractured in compression and shear failure, while three-dimensional multi-layer wrapping braided composite tubes and three-dimensional seven-directional braided composite tubes are split open in tensile and shear failure.


2012 ◽  
Vol 13 (11) ◽  
pp. 5566-5571
Author(s):  
Chin-Ok Lee ◽  
Gyung-Hyeon Park ◽  
Jiho Moon ◽  
Hak-Eun Lee ◽  
Nam-Hyoung Lim

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Taoli Xiao ◽  
Mei Huang ◽  
Min Gao

An experimental study of a rock-like material containing a preexisting fissure subjected to loading and unloading triaxial compression is carried out, and the results show that the mechanical characteristics of the rock-like specimen depend heavily on the loading paths and the inclination of the fissure. The triaxial loading experiment results show that the failure strength linearly increases, while the residual strength linearly decreases with increasing inclination. Furthermore, specimens subjected to triaxial compression show an “X”-type shear failure mode. The triaxial unloading compression experimental results show that specimens with different inclination angles have various failure modes. Specimens with gentle inclinations show a tensile-shear mix failure mode, specimens with middle inclinations show a shear-sliding failure mode, and specimens with steep inclinations show a tensile failure mode. These findings can be used to forecast excavation-induced instabilities in deep underground engineering rock structures.


Sign in / Sign up

Export Citation Format

Share Document