scholarly journals Damage accumulation near the cold-expanded hole due to high-cycle fatigue by crack compliance method

2021 ◽  
Vol 16 (59) ◽  
pp. 115-128
Author(s):  
Sviatoslav Eleonsky ◽  
Yuri Matvienko ◽  
Vladimir Pisarev ◽  
Michael Zajtsev

The novel destructive method is implemented for quantitative assessment of fatigue damage accumulation in the stress concentration zone accompanied by residual stress due to cold expansion of the through-thickness hole. Damage accumulation is reached by preliminary cyclic loading of plane specimens with cold-expanded holes. Narrow notches, emanating from the hole edge at different stages of high-cycle fatigue, serve to manifest a damage level. These notches are inserted without applying external load. Deformation response to local material removing, caused by pure residual stress influence, is measured by electronic speckle pattern interferometry (ESPI) in terms of in-plane displacement components. Normalized values of the notch mouth open displacement (NMOD), in-plane displacement component at the initial point of the notch acting in the notch direction (U0), in-plane displacement component at the final point of the notch acting in the notch direction (U1) and the stress intensity factor (SIF) are used as current damage indicators. Numerical integration of curves, describing an evolution of each fracture mechanics parameter over lifetime, produces the damage accumulation function in an explicit form. It is established that all four fracture mechanics parameters give very close results.

2021 ◽  
Vol 15 (56) ◽  
pp. 171-196
Author(s):  
Sviatoslav Eleonsky ◽  
Vladimir Pisarev ◽  
Mikhail Zajtsev ◽  
Mikhail Zichenkov ◽  
Marat Abdullin

Experimental method for a characterization of high-cycle fatigue evolution of residual stress near cold-expanded hole is developed and implemented. The technique is based on simultaneous measurements of deformation response to narrow notch, inserted in residual stress field, on opposite specimen’s faces by electronic speckle-pattern interferometry (ESPI). Two-side measurements of notch opening displacements are performed when a single notch, emanating from cold-expanded hole edge, is inserted. The transition from in-plane displacement component to residual stress intensity factor (SIF) values follows from the relationships of modified version of the crack compliance method. The approach provides a difference in residual stress values referred to mandrel entrance and exit surface. Notches are inserted at different stages of low-cycle fatigue without applying external load. The results obtained describe fine nuances of residual stress evolution, which cannot be considered as monotonic relaxation.


2019 ◽  
Vol 81 (3) ◽  
pp. 305-323
Author(s):  
I.A. Volkov ◽  
L.A. Igumnov ◽  
S.N. Sikaryov ◽  
D.N. Shishulin ◽  
A.I. Volkov

Processes of fatigue life of polycrystalline structural alloys under a combined effect of low- and high-cycle fatigue are considered. In the framework of mechanics of damaged media (MDM), a mathematical model is developed, which describes processes of plastic deformation and fatigue damage accumulation. The MDM model consists of three interrelated parts: relations defining cyclic elastoplastic behavior of the material, accounting for its dependence on the failure process; equations describing fatigue damage accumulation kinetics; a strength criterion of the damaged material. The version of defining relations of elastoplasticity is based on the notion of yield surface and the principle of orthogonality of the plastic strain rate vector to the yield surface at the loading point. This version of equations of state reflects the main effects of the cyclic plastic deformation process of the material for arbitrarily complex loading trajectories. The version of kinetic equations of damage accumulation is based on introducing a scalar parameter of damage degree. The construction uses energy-based principles and accounts for the main effects of the process of nucleation, growth and merging of microdefects under arbitrarily complex multiaxial loading regimes. A combined form of the evolutionary equation of fatigue damage accumulation in the regions of low-cycle (LCF) and high-cycle (HCF) fatigue is proposed. It is shown that, under regular cyclic loading of the material, the stress amplitude of the cycle decreases by degrees during the transition from LCF to HCF and depends on the physical interaction of these mechanisms in the transition zone. The condition when the damage degree attains its critical value is taken as the strength criterion of the damaged material. A methodology of numerically determining parameters of the evolutionary equation of fatigue damage accumulation in the conditions of HCF is presented. To assess the reliability and the limits of applicability of the defining relations of MDM, processes of plastic deformation and fatigue damage accumulation in a number of structural alloys in cyclic tests have been numerically studied, and the obtained numerical results have been compared with the data of full-scale experiments. The results of comparison of the numerical and experimental data reveal that the developed model of mechanics of damaged media adequately describes durability of structures subjected to a combined effect of low- and high-cycle fatigue mechanisms. It is shown that the introduced MDM model qualitatively and, accurately enough for practical engineering purposes, quantitatively describes the main effects of the processes of plastic deformation and fatigue damage accumulation in structural alloys under cyclic loading.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yoon Joo Na ◽  
Sarah A. Paluskiewicz ◽  
Christopher L. Muhlstein

Author(s):  
Pieter van Beek ◽  
Richard Pijpers ◽  
Kenneth Macdonald ◽  
Johan Maljaars ◽  
Knud Lunde ◽  
...  

In the process systems of offshore installations, welded small-bore side branches can prove vulnerable to high-cycle fatigue failure due to vibrations. This is especially the case for welded connections at tie-in points to the main pipe which are often critical details. International standards and guidelines therefore provide maximum acceptable vibration levels to ensure long term safe operation. In some guidelines, however, these acceptable vibration levels are phrased in terms of screening levels and in practice can be unduly conservative. Process pipework might then unjustly be regarded as unsafe based on measured vibrations in the field. This is especially true for offshore systems, which are characterized by low mechanical damping in the structure. This may result in overdesigned piping or over-conservative operational limits in order to keep vibration levels within the acceptable range. Furthermore, the screening methods and any detailed fatigue assessments typically use established stress-life (S-N) based fatigue design methods where uncertainty exists in the very high-cycle regime. This paper describes a novel and advanced tailor-made fatigue assessment method whereby acceptable vibration levels are based on maximum acceptable stress ranges for individual side branches. The acceptable stress ranges for each critical welded connection are based on a fracture mechanics analysis of fatigue crack growth. This method also minimizes the cantilevered (overhung) mass of small-bore side branches, whilst remaining safe for long-term operation. To illustrate the strength of the assessment methodology in practice, this paper describes the application of the procedure to a 2″ side branch connected to a main piping system. A fracture mechanics model and a detailed 3D finite element model are made. By comparing the stress ranges from the fracture mechanics model with the normalized stress ranges obtained from the dynamic FE analysis, maximum acceptable vibration levels for this particular side branch have been derived. The method is validated with experimental modal analysis and strain gauge measurements.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhanke Liu ◽  
Steven Tipton ◽  
Dinesh Sukumar

Summary Coiled tubing (CT) integrity is critical for well intervention operations in the field. To monitor and manage tubing integrity, the industry has developed a number of computer models over the past decades. Among them, low-cycle fatigue (LCF) modeling plays a paramount role in safeguarding tubing integrity. LCF modeling of CT strings dates back to the 1980s. Recently, novel algorithms have contributed to developments in physics-based modeling of tubing fatigue and plasticity. When CT trips into and out of the well, it goes through bending/straightening cycles under high differential pressure. Such tough conditions lead to low- or ultralow-cycle fatigue, limiting CT useful life. The model proposed in this study is derived from a previous one and is based on rigorously derived material parameters to compute the evolution of state variables from a wide range of loading conditions. Through newly formulated plasticity and strain parameters, a physics-based damage model predicts CT fatigue life, along with diametral growth and wall thinning. The revised modeling approach gives results for CT damage accumulation, diametral growth, and wall thinning under realistic field conditions, with experimental validation. For 20 different CT alloys, it was observed that the model improved in accuracy overall by approximately 18.8% and consistency by 14.0%, for constant pressure data sets of more than 4,500 data points. The modeling results provide insights into the nonlinear nature of fatigue damage accumulation. This study allowed developing recommendations to guide future analytical modeling and experimental investigations, summarize theoretical findings in physics-based LCF modeling, and provide practical guidelines for CT string management in the field. The study provides a fundamental understanding of CT LCF and introduces novel algorithms in plasticity and damage.


Sign in / Sign up

Export Citation Format

Share Document