scholarly journals Emotion-sensitive voice-casting care robot in rehabilitation using real-time sensing and analysis of biometric information

Author(s):  
Peeraya Sripian ◽  
Muhammad Nur Adilin Mohd Anuardi ◽  
Teppei Ito ◽  
Yoshito Tobe ◽  
Midori Sugaya

An important part of nursing care is the physiotherapist’s physical exercise recovery training (for instance, walking), which is aimed at restoring athletic ability, known as rehabilitation (rehab). In rehab, the big problem is that it is difficult to maintain motivation. Therapies using robots have been proposed, such as animalistic robots that have positive psychological, physiological, and social effects on the patient. These also have an important effect in reducing the on-site human workload. However, the problem with these robots is that they do not actually understand what emotions the user is currently feeling. Some studies have been successful in estimating a person’s emotions. As for non-cognitive approaches, there is an emotional estimation of non-verbal information. In this study, we focus on the characteristics of real-time sensing of emotion through heart rates – unconsciously evaluating what a person experiences – and applying it to select the appropriate turn of phrase by a voice-casting robot. We developed a robot to achieve this purpose. As a result, we were able to confirm the effectiveness of a real-time emotion-sensitive voice-casting robot that performs supportive actions significantly different from non-voice casting robots.

In this review, we aimed to give information about the basic features of screening techniques and major indications of ultrasonography in ophthalmology. This is a cheap, modern visualization modality and provides images in real-time. Sound waves travel through the eye reflect and these echoes form a picture of the structure of the eye. It also measures the size of the eye. These measurements determine the right power of a lens implant before cataract surgery. In addition realtime images help clinicians to evaluate inside of the eye that cannot be seen directly. Ultrasound biomicroscopy provides diagnostically significant information about anterior segment structures (Anatomic or pathologic structures, crucial biometric information.).


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3472 ◽  
Author(s):  
D’Mello ◽  
Skoric ◽  
Xu ◽  
Roche ◽  
Lortie ◽  
...  

Cardiography is an indispensable element of health care. However, the accessibility of at-home cardiac monitoring is limited by device complexity, accuracy, and cost. We have developed a real-time algorithm for heart rate monitoring and beat detection implemented in a custom-built, affordable system. These measurements were processed from seismocardiography (SCG) and gyrocardiography (GCG) signals recorded at the sternum, with concurrent electrocardiography (ECG) used as a reference. Our system demonstrated the feasibility of non-invasive electro-mechanical cardiac monitoring on supine, stationary subjects at a cost of $100, and with the SCG–GCG and ECG algorithms decoupled as standalone measurements. Testing was performed on 25 subjects in the supine position when relaxed, and when recovering from physical exercise, to record 23,984 cardiac cycles at heart rates in the range of 36–140 bpm. The correlation between the two measurements had r2 coefficients of 0.9783 and 0.9982 for normal (averaged) and instantaneous (beat identification) heart rates, respectively. At a sampling frequency of 250 Hz, the average computational time required was 0.088 s per measurement cycle, indicating the maximum refresh rate. A combined SCG and GCG measurement was found to improve accuracy due to fundamentally different noise rejection criteria in the mutually orthogonal signals. The speed, accuracy, and simplicity of our system validated its potential as a real-time, non-invasive, and affordable solution for outpatient cardiac monitoring in situations with negligible motion artifact.


2019 ◽  
Vol 286 (1903) ◽  
pp. 20190339 ◽  
Author(s):  
T. S. Harter ◽  
F. S. Zanuzzo ◽  
C. T. Supuran ◽  
A. K. Gamperl ◽  
C. J. Brauner

A successful spawning migration in salmon depends on their athletic ability, and thus on efficient cardiovascular oxygen (O 2 ) transport. Most teleost fishes have highly pH-sensitive haemoglobins (Hb) that can release large amounts of O 2 when the blood is acidified at the tissues. We hypothesized that plasma-accessible carbonic anhydrase (paCA; the enzyme that catalyses proton production from CO 2 ) is required to acidify the blood at the tissues and promote tissue O 2 extraction. Previous studies have reported an elevated tissue O 2 extraction in hypoxia-acclimated teleosts that may also be facilitated by paCA. Thus, to create experimental contrasts in tissue O 2 extraction, Atlantic salmon were acclimated to normoxia or hypoxia (40% air saturation for more than six weeks), and the role of paCA in enhancing tissue O 2 extraction was tested by inhibiting paCA at rest and during submaximal exercise. Our results show that: (i) in both acclimation groups, the inhibition of paCA increased cardiac output by one-third, indicating a role of paCA in promoting tissue O 2 extraction during exercise, recovery and at rest; (ii) the recruitment of paCA was plastic and increased following hypoxic acclimation; and (iii) maximal exercise performance in salmon, and thus a successful spawning migration, may not be possible without paCA.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 91
Author(s):  
Shun Ishii ◽  
Anna Yokokubo ◽  
Mika Luimula ◽  
Guillaume Lopez

Wearable devices are currently popular for fitness tracking. However, these general usage devices only can track limited and prespecified exercises. In our previous work, we introduced ExerSense that segments, classifies, and counts multiple physical exercises in real-time based on a correlation method. It also can track user-specified exercises collected only one motion in advance. This paper is the extension of that work. We collected acceleration data for five types of regular exercises by four different wearable devices. To find the best accurate device and its position for multiple exercise recognition, we conducted 50 times random validations. Our result shows the robustness of ExerSense, working well with various devices. Among the four general usage devices, the chest-mounted sensor is the best for our target exercises, and the upper-arm-mounted smartphone is a close second. The wrist-mounted smartwatch is third, and the worst one is the ear-mounted sensor.


Sign in / Sign up

Export Citation Format

Share Document